
Universitat Oberta de Catalunya

Master’s thesis

Analysis and applications of
orthogonal approaches to simplify

Mixed Boolean-Arithmetic
expressions

Arnau Gàmez i Montolio

supervised by

Enric Hernández Jiménez

May 31, 2022

Abstract

A Mixed Boolean-Arithmetic (MBA) expression is composed of integer arithmetic operators,
e.g. (+,−,×) and bitwise operators, e.g. (∧,∨,⊕,¬). MBA expressions can be leveraged to
obfuscate the data-flow of code by iteratively applying rewrite rules and function identities
that complicate (obfuscate) the initial expression while preserving its semantic behavior. This
possibility is motivated by the fact that the combination of operators from these different fields
do not interact well together : we have no rules (distributivity, factorization...) or general theory
to deal with this mixing of operators.

In this project, we study and explore approaches to MBA simplification which are orthogonal to
current techniques relying on a combination of symbolic execution and program synthesis. The
main idea is to be able to extract some information from the underlying mathematical structure
of such expressions. Then, this information can be used either alone or in combination with
other techniques to aid in the task of MBA simplification. The focus is set upon recent research
literature that develops such ideas, mainly addressing the problem of providing a normalized
representation of (a subset of) linear MBA expressions as linear combinations with respect to
an arbitrary set of minimal operators and expressions that form a basis of an ad hoc vector
space where such linear MBA expressions live.

We analyze the contributions, flaws and limitations of recent research in this regard, and provide
practical applications. In particular, we leverage a semantics preserving transformation which
reduces the alternation of arithmetic and bitwise operators of an MBA expression in the context
of program synthesis based code deobfuscation. This transformation is then used to aid in
the problem of verifying the semantic correctness of a synthesized candidate expression, thus
improving the soundness of such technique.

i

Resum

Una expressió Mixta Booleana-Aritmètica (MBA) està formada per operadors aritmètics sobre
enters, per exemple (+,−,×) i operadors bit a bit, per exemple (∧,∨,⊕,¬). Les expressions
MBA es poden aprofitar per ofuscar el flux de dades del codi aplicant iterativament regles de
reescriptura i identitats de funcions que compliquen (ofusquen) l’expressió inicial, al mateix
temps que es preserva el seu comportament semàntic. Aquesta possibilitat està motivada pel
fet que la combinació d’operadors d’aquests dos camps diferents no interactuen gaire bé: no
tenim regles (distributivitat, factorització. . .) o una teoria general per tractar amb aquests
operadors barrejats.

En aquest projecte, explorem enfocaments ortogonals a les tècniques actuals per tractar la sim-
plificació d’expressions MBA, les quals es basen en l’ús combinat d’execució simbòlica i śıntesi
de programes. La idea principal és aconseguir extreure informació subjacent a l’estructura
matemàtica d’aquestes expressions. Aix́ı, podem fer servir aquesta informació, siga per si
mateixa o en combinació amb altres tècniques, per facilitar la tasca de simplificar expres-
sions MBA. Posem èmfasi en l’estudi d’alguns articles acadèmics recents que desenvolupen
aquestes idees, majoritàriament dirigits a proporcionar una representació normalitzada (d’un
subconjunt) d’expressions MBA lineals com a combinacions lineals respecte a un conjunt arbi-
trari d’operadors mı́nims i expressions que conformen una base d’un espai vectorial ad hoc on
habiten aquestes expressions MBA lineals.

Analitzem les contribucions, defectes i limitacions de les investigacions recents en aquest sen-
tit, i en proporcionem aplicacions pràctiques. En particular, aprofitem una transformació que
redueix l’alternança d’operadors aritmètics i bit a bit d’una expressió MBA tot preservant-
ne el comportament semàntic en el context de la desofuscació de codi basada en la śıntesi de
programes. Aquesta transformació s’utilitza després per ajudar en el problema de verificar la
correcció semàntica d’una expressió candidata sintetitzada, millorant aix́ı la solidesa d’aquesta
tècnica.

ii

Resumen

Una expresión Mixta Booleana-Aritmética (MBA) está formada por operadores aritméticos
sobre enteros, por ejemplo (+,−,×) y operadores bit a bit, por ejemplo (∧,∨,⊕,¬). Las
expresiones MBA se pueden aprovechar para ofuscar el flujo de datos del código aplicando iter-
ativamente reglas de reescritura e identidades de funciones que complican (ofuscan) la expresión
inicial, al tiempo que se preserva su comportamiento semántico. Esta posibilidad está motivada
por el hecho de que la combinación de operadores de estos dos campos diferentes no interactúan
muy bien: carecemos de reglas (distributividad, factorización. . .) o una teoŕıa general para
tratar con estos operadores mezclados.

En este proyecto, exploramos enfoques ortogonales a las técnicas actuales para tratar la sim-
plificación de expresiones MBA, que se basan en el uso combinado de ejecución simbólica y
śıntesis de programas. La idea principal es conseguir extraer información subyacente a la es-
tructura matemática de estas expresiones. Aśı, podemos utilizar esta información, sea por śı
misma o en combinación con otras técnicas, para facilitar la tarea de simplificar expresiones
MBA. Ponemos énfasis en el estudio de algunos art́ıculos académicos recientes que desarrollan
estas ideas, mayoritariamente dirigidos a proporcionar una representación normalizada (de un
subconjunto) de expresiones MBA lineales como combinaciones lineales respecto a un conjunto
arbitrario de operadores mı́nimos y expresiones que conforman una base de un espacio vectorial
ad hoc donde habitan estas expresiones MBA lineales.

Analizamos las contribuciones, defectos y limitaciones de las investigaciones recientes en este
sentido, y proporcionamos aplicaciones prácticas. En particular, aprovechamos una transfor-
mación que reduce la alternancia de operadores aritméticos y bit a bit de una expresión MBA
preservando su comportamiento semántico en el contexto de la desofuscación de código basada
en la śıntesis de programas. Esta transformación se utiliza luego para ayudar al problema de
verificar la corrección semántica de una expresión candidata sintetizada, mejorando aśı la solidez
de esta técnica.

iii

Contents

Introduction 1

1 Mixed Boolean-Arithmetic expressions 3
1.1 Fundamentals . 3

1.1.1 Polynomial MBA expressions . 3
1.1.2 Linear MBA expressions . 3

1.2 MBA expressions in the context of code obfuscation 4
1.2.1 Obfuscation of expressions . 4
1.2.2 Obfuscation of constants . 6

1.3 Code deobfuscation through MBA simplification 8
1.3.1 Symbolic execution . 8
1.3.2 Program synthesis . 10

2 Analysis of recent orthogonal approaches to MBA simplification 13
2.1 Motivation . 13

2.1.1 Generating new linear MBA equalities . 13
2.2 MBA-Blast . 17

2.2.1 Contributions . 17
2.2.2 Flaws and limitations . 19

2.3 MBA-Solver . 21
2.3.1 Contributions . 21
2.3.2 Flaws and limitations . 26

3 Improving program synthesis based MBA simplification reliability 29
3.1 Motivation . 29
3.2 Method description . 29
3.3 Practical application: a guided example . 32
3.4 Limitations . 39

Conclusions 41

Bibliography 43

Appendices 47
A Proposed objectives . 47

A.1 Principal . 47
A.2 Secondary . 47
A.3 Specifics . 47

B Logistics . 48

iv

B.1 Temporal planning . 48
B.2 Report . 48
B.3 Contact with supervisor . 48

Introduction

Code obfuscation is the process of transforming an input program P into a functionally equiv-
alent program P ′ which is harder to analyze and to extract information than from the initial
program P .

We find two clearly differentiated areas in which code obfuscation is commonly and widely used:
malware threats and (commercial) software protection. The desired technical outcome is the
same for both cases: complicate the process of reverse engineering the final product (software)
and therefore difficult the understanding of the workings and intention of initial code. However,
the motivation can deeply vary. On the one hand, malware threats leverage obfuscation in
order to hide malicious payloads and increase the total time being undetected. On the other
hand, commercial software protection is usually intended to protect intellectual property and
prevent illegal distribution of non-registered or non-licensed copies. Thus, code obfuscation is
an important part of any modern Digital Rights Management technology solution.

Many different code obfuscation techniques exist with their own particularities. Nevertheless,
the general idea is as follows: mess with program’s control-flow and/or data-flow at different
abstraction levels (source code, compiled binary, intermediate representation) on different target
units (whole program, function, basic block). It is important to note that different techniques
can be mixed together to increase the complexity of the resulting obfuscated code in an even
more unpredictable way.

Code deobfuscation is the process of transforming an obfuscated (piece of) program P ′ into
a (piece of) program P ′′ that is easier to analyze than P ′. Ideally, we would like to have
P ′′ ≈ P , where P represents the original non-obfuscated program code. This is rarely possible
to guarantee, mainly because the analyst doing the deobfuscation process almost never has
access to original code to check against. Moreover, usually the analyst is just interested in
some specific parts of the program rather than the whole program. The analyst might also be
interested in understanding the code rather than reconstructing a functional binary.

State-of-the-art code deobfuscation techniques rely on symbolic execution, taint analysis and
a combination of them. Symbolic execution is a technique that lets the analyst transform
the control-flow and data-flow of the program into symbolic expressions. Taint analysis is a
technique that lets the analyst know at each program point what part of memory or registers
are controllable by the user input.

These techniques have been shown to be promising to address control-flow based obfuscation, in
which we need to check the satisfiability of the obtained symbolic boolean condition. However,
when analyzing data-flow based obfuscation (like Mixed Boolean-Arithmetic or virtualized han-
dlers behavior), we are interested in finding a simpler semantically equivalent expression rather
than checking for its satisfiability. We find that these techniques are heavily dependent on the
syntactic complexity of the code being analyzed. Thus, an adversary might thwart the analysis

1

capabilities by arbitrarily increasing the syntactic complexity of the obfuscated code.

In order to overcome the scalability issues of increased syntactic complexity and, specifically,
to be able to address data-flow based code obfuscation techniques, we would like to be able
to reason about the semantics of the code instead of its syntax. Some work has been recently
done in that direction. Mainly, trying to incorporate program synthesis techniques to the
deobfuscation process in order to synthesize the semantics of a particular snippet of code,
presumably obfuscated.

Although there has been some recent progress on orthogonal approaches to aid in deobfuscation
efforts, there is still a huge lack of both theoretical foundations and practical tools to address
the question of simplifying/deobfuscating Mixed Boolean-Arithmetic expressions.

2

Chapter 1

Mixed Boolean-Arithmetic
expressions

1.1 Fundamentals

Informally, a Mixed Boolean-Arithmetic (MBA) expression is an algebraic expression composed
of integer arithmetic operators, e.g. (+,−,×) and bitwise operators, e.g. (∧,∨,⊕,¬). The
concept of MBA expressions initially appeared in the context of code obfuscation, in the work
by Zhou et al. [Zho+07].

As in Eyrolles’ PhD thesis [Eyr17], we choose to define MBA expressions by explicitly de-
scribing the different building blocks (operators) that compose them and how they are
bundled together.

Remark 1.1. We will use interchangeably the terms of boolean and bitwise operators.

1.1.1 Polynomial MBA expressions

A polynomial MBA expression consists of a sum of terms, each one composed of an n-bit
constant ai times the product of several bitwise expressions on a number t of n-bit variables.

Definition 1.2 (Polynomial MBA expression). An expression E of the form

E =
∑
i∈I

ai ·
(∏

j∈Ji

ei,j(x1, . . . , xt)

)
where the arithmetic sum and product are modulo 2n, ai are constants in Z/2nZ, ei,j are bitwise
expressions of variables x1, . . . , xt in {0, 1}n, I ⊂ Z and for all i ∈ I, Ji ⊂ Z are finite index
sets, is a polynomial Mixed Boolean-Arithmetic (MBA) expression.

Example 1.3. The expression E written as

E = 43(x ∧ y ∨ z)2((x⊕ y) ∧ z ∨ t) + 2x+ 123(x ∨ y)zt2

is a polynomial MBA expression.

1.1.2 Linear MBA expressions

Linear MBA expressions are defined as a restriction to the previous definition, by imposing just
one bitwise expression for each term instead of a product of an arbitrary number of them.

3

Definition 1.4 (Linear MBA expression). A polynomial MBA expression of the form

E =
∑
i∈I

aiei(x1, . . . , xt)

is called a linear MBA expression.

Example 1.5. The expression E written as

E = (x⊕ y) + 2× (x ∧ y)

is a linear MBA expression, which simplifies to E = x+ y.

1.2 MBA expressions in the context of code obfuscation

The following statement from [Zho+07] is essential to our study.

Proposition 1.6. Consider the composition of polynomial MBA expressions by treating each
of x1, . . . , xt as a polynomial MBA expression of other variables itself. Then, this composition
is still a polynomial MBA expression.

This fact guarantees that we will always be working with polynomial MBA expressions, re-
gardless of the particular iterative composition techniques used to build (obfuscate, complicate)
them.

1.2.1 Obfuscation of expressions

Given an MBA expression E1, we are interested in generating a semantically equivalent
expression E2 which is syntactically more complex than the initial expression E1.

This technique was presented in [Zho+07; ZM06] and in several patents with intersecting au-
thors, like [JXY08]. The process relies on two differentiated components, which can be used
either alone or combined.

MBA rewriting

A chosen operator (subexpression) is rewritten with an equivalent MBA expression.

Example 1.7.

x+ y → (x⊕ y) + 2× (x ∧ y)

A list of rewrite rules is given in Appendix A of [Eyr17]. Other MBA equalities can be found in
[War12] referred as bit hacks. A constructive method to generate arbitrary linear rewrite rules
is also known, and will be presented in Section 2.1.1.

Insertion of identities

Let e be any subexpression of the target expression being obfuscated. Then, we can write e as
f−1(f(e)) with f being any invertible function on Z/2nZ.

Remark 1.8. Both in literature and in-the-wild, these functions are often affine mappings,
following the construction that was presented in [Zho+07]. However, there is no actual reason
why they cannot be any other pair of inverse functions that define a bijection (i.e a 1-to-1 map).

4

Example 1.9. Let E1 = x + y on Z/28Z. Consider the following functions f and f−1 on
Z/28Z:

f : x 7→ 39x+ 23

f−1 : x 7→ 151x+ 111

Consider now the expression E2 obtained by applying the previous rewrite rule to E1:

E2 = (x⊕ y) + 2× (x ∧ y)

Then apply the insertion of identities produced by f and f−1:

Etmp = f(E2) = 39× E2 + 23

E3 = f−1(Etmp) = 151× Etmp + 111

Finally, expand E3 to observe the final obfuscated expression derived from E1 = x+ y:

E3 = 151× (39× ((x⊕ y) + 2× (x ∧ y)) + 23) + 111

Let’s look at an implementation of this construction with the help of an SMT solver1. In
particular, we leverage Z3 [MB08] through its Python API to check that the functions f and
f−1 define inverse mappings and prove the semantic equivalence of E1, E2 and E3.

from z3 import *

x, y = BitVecs('x y', 8)

def f(x): return 39*x + 23

def f_inv(x): return 151*x + 111

print("Prove that f and f_inv are inverses:\n---")

prove(f(f_inv(x)) == x)

E1 = x + y

E2 = (x ^ y) + 2*(x & y)

E_tmp = f(E2)

E3 = f_inv(E_tmp)

print("\nObserve the three expressions E1, E2 and E3:\n---")

print("E1 =", E1)

print("E2 =", E2)

print("E3 =", E3)

print("\nProve semantic equivalence of E1, E2 and E3:\n---")

prove(E1 == E2)

prove(E2 == E3)

prove(E3 == E1)

If we run it, we obtain:

1https://en.wikipedia.org/wiki/Satisfiability modulo theories

5

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

Prove that f and f_inv are inverses:

proved

Observe the three expressions E1, E2 and E3:

E1 = x + y

E2 = (x ^ y) + 2*(x & y)

E3 = 151*(39*((x ^ y) + 2*(x & y)) + 23) + 111

Prove semantic equivalence of E1, E2 and E3:

proved

proved

proved

Remark 1.10. To prove the semantic equivalence of E1, E2 and E3, we proved the following
diagram of equivalences.

E1

E2

E3

≡

≡

≡

1.2.2 Obfuscation of constants

This technique known as opaque constant allows to hide a target constant K (e.g. a secret key
used in a decryption routine, known constants for hashing algorithms, etc.). It combines the
power of MBA expressions with permutation polynomials2

A permutation polynomial is a polynomial that acts as a permutation of the elements of the
set they apply to (in our case, n-bit values), i.e. defines a 1-to-1 map (bijection) in Z/2nZ. As
such polynomials define a bijection, an inverse mapping must exist. However, such inverse is
not guaranteed to exist in the form of another permutation polynomial (of same degree).

Permutation polynomials were characterized by Rivest in [Riv01], but an inversion algorithm
was not provided then. Later, Zhou et al. provided a constructive method to generate a subset
of such polynomials of degree m, denoted as Pm(Z/2nZ), as well as a formula to find their
inverse. This formula and proof of correctness can be consulted on Section 3.3 of [Zho+07].

The method to construct the opaque constant is given by the following proposition.

Proposition 1.11. Let

• K ∈ Z/2nZ be the target constant to hide,

• P ∈ Pm(Z/2nZ) and Q its inverse: P (Q(X)) = X,∀X ∈ Z/2nZ,

• E be an MBA expression of variables (x1, . . . , xt) ∈ (Z/2nZ)t non-trivially equal to zero.

2https://en.wikipedia.org/wiki/Permutation polynomial

6

https://en.wikipedia.org/wiki/Permutation_polynomial

Then, the constant K can be replaced by P (E +Q(K)) for any values taken by (x1, . . . , xt).

Proof. By construction, we have:

P (E +Q(K)) = P (Q(K)) = K

regardless of the input variables (x1, . . . , xt), as the expression E vanishes.

With the opaque constant technique we obtain a function that computes K for all its input
variables. Those variables can be chosen randomly every time the program requires the value
K to perform any computation.

Example 1.12. Working on 8-bit values, let:

K = 123

P (X) = 97X + 248X2

Q(X) = 161X + 136X2

E(x, y) = x− y + 2(¬x ∧ y)− (x⊕ y)

where K is the constant value 123 in Z/28Z that we want to hide, P and Q are a pair of inverse
permutation polynomials in 8-bits, i.e. in Z/28Z and E(x, y) is a non-trivially equal to zero
MBA expression on two 8-bit variables x and y.

The opaque constant function OC(x, y) = P (E(x, y) +Q(K)) will be given by the expression

195

+ 97x

+ 159y

+ 194¬(x ∨ ¬y)
+ 159(x⊕ y)

+ (163 + x+ 255y + 2¬(x ∨ ¬y) + 255(x⊕ y))(232 + 248x+ 8y + 240¬(x ∨ ¬y) + 8(x⊕ y))

That is, for any pair of 8-bit input values x and y, the function OC(x, y) will always produce
the constant output value of K = 123.

Again, let’s look at an implementation of this example in Python using Z3.

from z3 import *

Define constant K = 123 as an 8-bit value

K = BitVecVal(123, 8)

Define inverse permutation polynomials

X = BitVec('X', 8)

def P(X): return 97*X + 248*X*X

def Q(X): return 161*X + 136*X*X

print("Prove that P and Q define inverse mappings:\n---")

prove(P(Q(X)) == X)

Define non-trivially equal to zero MBA expression

7

x, y = BitVecs('x y', 8)

def E(x, y): return x-y + 2*(~x&y) - (x^y)

print("\nProve that MBA expression is non-trivially equal to zero:\n---")

prove(E(x, y) == 0)

Generate opaque constant

OC = P(E(x,y) + Q(K))

Apply basic simplification rules (group terms)

OC = simplify(OC)

Print opaque constant function

print("\nOpaque constant generated:\n---")

print(OC)

print("\nProve that OC function is semantically equivalent to the constant 123\n---")

prove(OC == 123)

If we run it, we obtain:

Prove that P and Q define inverse mappings:

proved

Prove that MBA expression is non-trivially equal to zero:

proved

Opaque constant generated:

195 +

97*x +

159*y +

194*~(x | ~y) +

159*(x ^ y) +

(163 + x + 255*y + 2*~(x | ~y) + 255*(x ^ y))*

(232 + 248*x + 8*y + 240*~(x | ~y) + 8*(x ^ y))

Prove that OC function is semantically equivalent to the constant 123

proved

1.3 Code deobfuscation through MBA simplification

1.3.1 Symbolic execution

Symbolic execution is a technique that lets the analyst transform the control-flow and data-flow
of the program into symbolic expressions.

Essentially, it can be thought as a computer algebra system for a programming language, an
assembly representation of a given computer architecture or even intermediate languages (IL),
also known as intermediate representations (IR).

8

Symbolic execution can be leveraged to extract the formula for the value a variable will hold at
some point in the program, with respect to the inputs defined at a starting point of the analysis
(basic block, function, etc.). Similarly, it can also be used to extract the path constraints that
encode the branching conditions of a basic block with respect to the variables involved in it.

The basic operation of a symbolic execution engine is as follows:

• Define an initial state mapping for the variables (registers, memory)

• Translate assembly into formulas (possibly using an IR)

• Execute current instruction and extract its semantics

• Update the state mapping to account for the effects of the executed instruction

Plugging an SMT solver

One of the main strengths of symbolic execution is when it gets combined with an SMT solver
[JGY15; PRV11].

SMT solvers can find satisfying solutions to a set of constraints. Three possible outcomes exist:

• SAT : A concrete assignment exists satisfying the constraints

• UNSAT : There is no solution for the given set of constraints

• UNK : Answer not found within the resource boundaries (usually timeout)

When the outcome is SAT, a concrete assignment known as a model is also retrieved.

Combining SMT solvers with symbolic execution comes very naturally:

• In control-flow analysis, the symbolic execution engine is used to extract the formulae
(constraints) for a given path branching condition. The constraints are fed into an SMT
solver that can prove the feasibility of such paths.

• In data-flow analysis, the symbolic execution engine is usually leveraged to extract the
formula for the return value of a function with respect to its input parameters. Then, this
formula can be fed to the SMT solver to craft an input that makes the function return the
desired value (bypass checks, etc.) or treated as an obfuscated (MBA) expression that we
aim to simplify.

These techniques have been shown to work nicely when addressing the issue of control-flow based
obfuscation in which we need to check the satisfiability of the obtained symbolic constraints
[SBP18]. However, complete automation might not scale on large and complex targets due to
path explosion, as the symbolic state needs to be forked at every branching control, which can
lead to resource exhaustion.

The results are not so convincing when addressing the task of data-flow deobfuscation (for
example, MBA simplification or VM instruction handlers behavior extraction from VM-based
obfuscation) where we are interested in finding a simpler expression that is semantically equiva-
lent to the extracted symbolic expression, rather than checking for its satisfiability. We find that
classic simplification techniques are heavily dependent on the syntactic complexity of the code
being analyzed. Thus, an adversary might thwart the analysis capabilities by arbitrarily in-
creasing the syntactic complexity of the obfuscated code introducing either artificial complexity
(e.g. junk code) or algebraic complexity (e.g. MBA obfuscation transformations) [Ban+16].

9

1.3.2 Program synthesis

In order to overcome the scalability issues that arise from increased syntactic complexity and,
specifically, to be able to address data-flow based code deobfuscation more effectively, we would
like to reason about the semantics of the code instead of its syntax.

In this sense, there has been some recent work towards introducing program synthesis techniques
aiming to synthesize the semantics of a particular snippet of code, presumably obfuscated
[BA06; Gul+11; GT11; Rol14; Bio+17; Bla+17; DCC20; Men+21]. By reasoning about code
semantics, we are no longer limited by the syntactic complexity of the underlying code, which
can be arbitrarily increased, but only by its semantic complexity.

Example 1.13. Consider the following function describing an obfuscated MBA expression:

f(x, y, z) = (((x⊕ y) + ((x ∧ y)× 2)) ∨ z) + (((x⊕ y) + ((x ∧ y)× 2)) ∧ z)

We can treat f as a black-box and observe its behavior:

(1, 1, 1) −→ f(x, y, z) −→ 3

(2, 3, 1) −→ f(x, y, z) −→ 6

(0,−7, 2) −→ f(x, y, z) −→ −5

. . .

Thus, our objective is to learn (or synthesize) a simpler function with the same Input/Output
(I/O) behavior:

h(x, y, z) = x+ y + z

Program synthesis is the process of automatically constructing programs that satisfy a given
specification. By specification, we mean to find a way of somehow telling the computer what to
do and let the implementation details to be carried out by the synthesizer.

A specification can be provided in different ways. Among the most common ones we find the
following:

• A formal specification in some logic (e.g. first-order logic3). For example, if we would
like to have a program P that adds 7 to any 64-bit integer input, we could write the
specification as:

∀x ∈ Z/264Z, P (x) = x+ 7

• A set of inputs and outputs that describe how the program should behave. For the example
program P described before, we could provide as the specification a list of input/output
values like:

(0, 7), (−4, 3), (123, 130), (−368,−361) . . .

• A reference implementation. Although it might seem strange, it will prove useful in several
cases, including our treatment of data-flow code deobfuscation, as will be motivated below.

We want to recover (learn) the semantics of some obfuscated code (expression) whose syntactic
complexity has been arbitrarily increased to the point where an SMT solver is not enough to
adequately simplify the obfuscated code (expression) into a simple enough representation of its
semantics.

3https://en.wikipedia.org/wiki/First-order logic

10

https://en.wikipedia.org/wiki/First-order_logic

While there are many flavors of program synthesis [Gul10; GPS17], the nature of our problem
leads to an inductive oracle-guided program synthesis style, using the obfuscated code as
an I/O oracle:

• Generate a set of I/O pairs from the obfuscated code (oracle).

• Determine the best candidate program that matches the I/O behavior.

Notable existing work

Syntia (2017) [Bla+17]: Monte Carlo Tree Search (MCTS) based stochastic program synthesis:

• Convert the problem of finding a candidate program into a stochastic optimization problem

• At each iteration we generate intermediate results instead of actual candidate programs

• Evolve towards a global optima (best candidate program) guided by a cost function.

A public implementation is available4 as well as an integration into the radare25 reverse engi-
neering framework, called r2syntia6 which was presented in [Mon20].

QSynth (2020) [DCC20]: Offline enumerative program synthesis:

• Given a context-free grammar, generate all programs up to a certain number of derivations

• Create offline lookup tables mapping each candidate program to its I/O behavior

• Perform an exhaustive search for candidate programs matching the oracle’s I/O behavior

The most significant contribution of the QSynth approach is the ability to split an obfuscated
expression into smaller subexpressions, synthesize them individually and then reconstruct the
total simplified expression. Public implementations exist, namely msynth7 on top of Miasm8,
and QSynthesis9 on top of Triton10 [SS15].

Limitations

In general, the limits of (oracle-guided) program synthesis itself apply to any method that
leverages such an approach to synthesize simplified expressions for code deobfuscation. These
limits might come from different sources:

• Semantic complexity : expressions that are inherently very complex, non-linear and with
deep nesting level. The clearest example would be cryptographic algorithms, which present
strong confusion and diffusion properties.

• Non-determinism: algorithms that can exhibit different behaviors on different runs, even
for the same input, usually involving some kind of (pseudo)random process.

• Point functions: functions that always return the same output for all inputs except for a
single distinguished input.

4https://github.com/RUB-SysSec/syntia
5https://github.com/radareorg/radare2
6https://github.com/arnaugamez/r2syntia
7https://github.com/mrphrazer/msynth
8https://miasm.re/
9https://github.com/quarkslab/qsynthesis

10https://triton.quarkslab.com/

11

https://github.com/RUB-SysSec/syntia
https://github.com/radareorg/radare2
https://github.com/arnaugamez/r2syntia
https://github.com/mrphrazer/msynth
https://miasm.re/
https://github.com/quarkslab/qsynthesis
https://triton.quarkslab.com/

12

Chapter 2

Analysis of recent orthogonal
approaches to MBA simplification

2.1 Motivation

As we have discussed, symbolic execution has a hard time dealing with MBA expressions,
as SMT solvers are easily thwarted by arbitrarily increasing the syntactic complexity of such
expressions through MBA rewrite rules and insertion of identities [Ban+16]. While program
synthesis addresses this problematic by only considering these expressions from a semantic point
of view, existing approaches still have scaling limitations when the encoded semantics of the
obfuscated expression are not simple enough, and usually they cannot guarantee the correctness
of a simplified candidate, i.e. its semantic equivalence to the original obfuscated expression.

These limitations motivate the search for orthogonal approaches to MBA simplification that take
into account underlying mathematical properties. Thus, we want to extract MBA invariants
and other relevant information that can help in our understanding of MBA expressions by
themselves and derive simplification strategies that could be leveraged alone, or even plugged
into the existing techniques discussed for a better overall outcome.

The main contributions from both of the recent articles analyzed in this chapter are built on
top of the following method to construct non-trivially equal to zero linear MBA expressions,
from which new linear MBA equalities can be easily generated.

2.1.1 Generating new linear MBA equalities

Theorem 2.1 ([Zho+07; Eyr17]). With n the number of bits, s the number of bitwise expressions
and t the number of variables, all positive integers, let:

• (X1, . . . , Xk, . . . , Xt) ∈ {{0, 1}n}t be vectors of variables on n bits,

• e0, . . . , ej , . . . , es−1 be bitwise expressions,

• e =
∑s−1

j=0 ajej be a linear MBA expression, with aj integers,

13

• ej(X1, . . . , Xt) =

 fj(X1,0, . . . , Xt,0)
...

fj(X1,n−1, . . . , Xt,n−1)

 with Xk,i the i-th bit of Xk and

fj : {0, 1}t → {0, 1} 0 ≤ j ≤ s− 1

u 7→ fj(u)

• F =

 f0(0) . . . fs−1(0)
...

...
f0(2

t − 1) . . . fs−1(2
t − 1)

 the 2t× s matrix of all possible values of fj for any

i-th bit.

If F · V = 0 has a non-trivial solution, with V = (a0, . . . , as−1)
T , then e = 0.

Proof. Let F · V = 0, with V = (a0, . . . , as−1)
T . If we explicit F · V , we get:

F · V =

 f0(0) . . . fs−1(0)
...

...
f0(2

t − 1) . . . fs−1(2
t − 1)

 ·

 a0
...

as−1

 =

s−1∑
j=0

aj · fj(0)

...
s−1∑
j=0

aj · fj(2t − 1)

 ,

meaning that F · V = 0 ⇔
s−1∑
j=0

aj · fj(l) = 0 for every l ∈ {0, . . . , 2t − 1}.

This is equivalent to having
s−1∑
j=0

aj · fj(X1,i, . . . , Xt,i) = 0 for every i, whatever the values of the

Xk,i.
On the other hand, we can write e as:

s−1∑
j=0

aj · ej(X1, . . . , Xt) =
s−1∑
j=0

aj ·

 fj(X1,0, . . . , Xt,0)
...

fj(X1,n−1, . . . , Xt,n−1)

=

s−1∑
j=0

aj ·
n−1∑
i=0

fj(X1,i, . . . , Xt,i) · 2i

=
s−1∑
j=0

(n−1∑
i=0

aj · fj(X1,i, . . . , Xt,i) · 2i
)

=

n−1∑
i=0

2i
(s−1∑

j=0

aj · fj(X1,i, . . . , Xt,i)
)
.

If F · V = 0, then
s−1∑
j=0

aj · fj(X1,i, . . . , Xt,i) = 0 for every i, thus

n−1∑
i=0

2i
(s−1∑

j=0

aj · fj(X1,i, . . . , Xt,i)
)
= 0 ∀i, 0 ≤ i ≤ n− 1,

meaning that e = 0.

14

This theorem provides a method to create new linear MBA equalities. We can construct non-
trivially equal to zero linear MBA expressions and derive rewrite rules from these by moving
terms at different sides of the equality. The method is based on the following corollary.

Corollary 2.2. Given a {0, 1}-matrix of size 2t × s with linearly dependent column vectors,
one can generate a non-trivially equal to zero linear MBA expression of t variables as a linear
combination of s bitwise expressions.

Example 2.3. Let

F =

0 0 0 1 1
0 1 1 0 1
1 0 1 1 1
1 1 0 1 1

with column-vectors truth tables for:

f0(x, y) = x

f1(x, y) = y

f2(x, y) = (x⊕ y)

f3(x, y) = (x ∨ (¬y))
f4(x, y) = −1

Now, the vector V , a non-trivial solution to the system of equations derived from F · V = 0 is:

V =

−1
1
1
2
−2

Meaning that:

−f0 + f1 + f2 + 2f3 − 2f4 = 0

by replacing each fi by the bitwise expression it represents.

This yields the following linear MBA equation:

−x+ y + (x⊕ y) + 2(x ∨ (¬y)) + 2 = 0

which is a non-trivially equal to zero MBA expression.

Finally, we can derive many equalities from this equation leading to MBA rewrite rules:

x− y → (x⊕ y) + 2(x ∨ (¬y)) + 2

(x⊕ y) → x− y − 2(x ∨ (¬y))− 2

y + 2 → x− (x ∧ y)− 2(x ∨ ¬y)
x → y + (x⊕ y) + 2(x ∨ (¬y)) + 2

. . .

Let’s look at an implementation of this construction in Python. We leverage NumPy1 for matrix
manipulations and Z3 to solve the system of equations.

1https://numpy.org/

15

https://numpy.org/

import numpy as np

from z3 import *

Truth table vectors

tt_x = np.array([0,0,1,1])

tt_y = np.array([0,1,0,1])

tt_x_xor_y = np.array([0,1,1,0])

tt_x_or_not_y = np.array([1,0,1,1])

tt_neg_1 = np.array([1,1,1,1])

Convert into matrix from column vectors

F = np.column_stack((tt_x, tt_y, tt_x_xor_y, tt_x_or_not_y, tt_neg_1))

Define incognites for solution

x1, x2, x3, x4, x5 = Ints('x1 x2 x3 x4 x5')

V = [x1, x2, x3, x4, x5]

Initialize the Z3 solver engine

solver = Solver()

Add the conditions for the system of equations

print ("System of equations:\n---")

for row in range(F.shape[0]):

eq = F[row][0]*V[0]

for col in range(1, F.shape[1]):

eq += F[row][col]*V[col]

print(f"{eq} = 0")

solver.add(eq == 0)

We don't want the trivial solution

solver.add(

Not(

And(

x1 == 0, x2 == 0, x3 == 0, x4 == 0, x5 == 0

)

)

)

Check and extract the model (i.e. a particular solution)

solver.check()

m = solver.model()

Sort and print the output of the model nicely

ordered = (sorted (m.decls(), key = lambda x: str(x)))

print("\nCandidate solution:\n---\nV =", ordered, '=', [m[i] for i in ordered])

Define x and y as BitVectors of 8 bits (you can change the bitsize)

x, y = BitVecs('x y', 8)

We prove that the derived MBA expression is non-trivially equal to zero

print("\nCheck that MBA expression is non-trivially equal to zero:\n---")

prove(-x + y + (x^y) + 2*(x | (~y)) + 2 == 0)

16

If we run this snippet of code, we obtain:

System of equations:

0*x1 + 0*x2 + 0*x3 + 1*x4 + 1*x5 = 0

0*x1 + 1*x2 + 1*x3 + 0*x4 + 1*x5 = 0

1*x1 + 0*x2 + 1*x3 + 1*x4 + 1*x5 = 0

1*x1 + 1*x2 + 0*x3 + 1*x4 + 1*x5 = 0

Candidate solution:

V = [x1, x2, x3, x4, x5] = [-1, 1, 1, 2, -2]

Check that MBA expression is non-trivially equal to zero:

proved

2.2 MBA-Blast

2.2.1 Contributions

The core contribution that Binbin Liu et al. present in [Liu+21] is a proof for the converse
direction of the previous theorem. They state and prove it as follows:

Theorem 2.4 ([Liu+21]). Let E =
s−1∑
j=0

ajej be an MBA expression, where aj are integers and

ej are boolean functions fj(X1, X2, . . . , Xt) taking t variables X1, X2, . . . , Xt as input. Each
variable has n bits. We use Xk,i to represent the ith bit of the kth input variable in ej. Let M
be the 2t × s boolean matrix representing the truth table of e0, e1, . . . , es−1.

v⃗ =

a0
a1
. . .
as−1

is an s dimension vector consisting of all the coefficients in E.

Then, E ≡ 0 if and only if the linear system Mv⃗ = 0.

Proof. The sufficiency has already been proved in Theorem 2.1, that is, if Mv⃗ = 0, then E ≡ 0.
Now we prove the necessity, namely, if E ≡ 0, then Mv⃗ = 0.

If E ≡ 0, then

E = 20 · E0 + 21 · E1 + · · ·+ 2n−1 · En−1 = 0

where Ei is the calculation of E on the ith bit of input variables:

Ei =

s−1∑
j=0

ajfj(X1,i, . . . , Xt,i)

We prove Ei = 0 by contradiction.

17

Suppose ∃k,Ek =
s−1∑
j=0

ajfj(X1,k, . . . , Xt,k) = ē ̸= 0. We construct a group of inputsX ′
1, X

′
2, . . . , X

′
t

where

X ′
1,i = X1,k

X ′
2,i = X2,k

. . .

X ′
t,i = Xt,k

for i = 1, 2, . . . , n

Feed X ′
1, X

′
2, . . . , X

′
t to E, then ∀i = 1, 2, . . . , n, Ei = ē

E = 20 · E0 + 21 · E1 + · · ·+ 2n−1 · En−1

= 20 · ē+ 21 · ē+ · · ·+ 2n−1 · ē
= (2n = 1)ē

Since E ≡ 0,
(2n = 1)ē = 0

ē = 0

This contradicts the supposition that ē ̸= 0. Hence, our supposition is false, so for any input
X1,i, . . . , Xt,i,

Ei =

s−1∑
j=0

ajfj(X1,i, . . . , Xt,i) = 0

a0e0 + a1e1 + · · ·+ as−1es−1 = 0

Therefore,
Mv⃗ = 0

Thanks to this proof, we have now the ability to reduce n-bit MBA expressions into 1-bit MBA
expressions and back. Given an n-bit obfuscated MBA expression En, the goal is to find a
simpler and semantically equivalent n-bit expression E′

n. Within this context, they propose a
method to address the problem of MBA simplification as follows:

1. Transform En in n-bit space to E1 in 1-bit space.

2. Find a simplified MBA expression E′
1 in 1-bit space, such that E1 − E′

1 ≡ 0

3. Transform E′
1 in 1-bit space to E′

n in n-bit space.

The authors of the paper state that steps 1 and 3 are given by the previous proof. For the step
2, they perform a truth table based (bruteforce) simplification strategy on this 1-bit space.

We will not get into the details of such method, which is rather simple and can be consulted on
the original paper [Liu+21]. Nevertheless, it is important to point out several flawed statements
and issues with this approach that do not seem to have been contemplated, but assumed to
work universally instead.

18

2.2.2 Flaws and limitations

MBA definition

The first thing to note is that the definition that the paper provides for an MBA expression is
actually the definition of a linear MBA expression, excluding the more general definition for a
polynomial MBA expression.

Thus, from the very beginning we must know that the paper will only deal with a subset of
MBA expressions: linear MBA expressions. This fact is not mentioned anywhere.

Obfuscation through insertion of identities is not considered

Their approach has been formulated in a way that targets obfuscated MBA expressions that
have been constructed through MBA rewrite rules. Thus, obfuscated MBA expressions that
leverage insertion of identities (encodings) might thwart this methodology, as they explicitly
state [Liu+21]:

It is also possible that attackers combine MBA obfuscation with other data encoding
techniques to create complex expressions with bitwise and arithmetic operations but
does not meet the MBA definition in this paper.

The method is not general, even for linear MBA expressions

The authors state [Liu+21]:

The two-way feature in current MBA obfuscation implies that any n-bit obfuscated
MBA expression can be simplified in 1-bit space. Consequently, the MBA reduction
in 1-bit space is equivalent to that in n-bit space.

This affirmation is not correct, or at least not entirely precise. On the one hand, it would not
apply to polynomial (non-linear) MBA expressions. This is trivial, as the theorem (and proof)
that brings this results is applied only to linear MBA expressions.

However, the statement is flawed even if we restrict the definition of MBA expressions to consider
only linear MBA expressions.

In [Eyr17], Eyrolles already points out that for the motivating Theorem 2.1 to hold, the bitwise
operations cannot contain constants other than 0 and -1. The reason for that is pretty simple:
the only way to map an n-bit constant to a 1-bit constant (and back) without losing information
is if the n-bit constant is either 0 (0 . . . 0 in binary) or −1 (1 . . . 1 in binary).

We can also find linear MBA expressions without problematic constants that do not hold their
formulation [Liu+21]:

Any n-bit MBA identity is equivalent to the same form on 1-bit space.

En − E′
n ≡ 0 ⇔ E1 − E′

1 ≡ 0

Example 2.5. Let

E1 = x+ y,E′
1 = x⊕ y,E1 − E′

1 = x+ y − (x⊕ y) in 1 bit.

E2 = x+ y,E′
2 = x⊕ y,E2 − E′

2 = x+ y − (x⊕ y) in 2 bits.

In this case, we have
E1 − E′

1 ≡ 0, E2 − E′
2 ̸≡ 0

19

Let’s prove it with the help of Z3.

from z3 import *

x, y = BitVecs("x y", 1)

E1 = x + y

E2 = x ^ y

print("Prove that (x + y) - (x ^ y) is equivalent to 0 in 1-bit space:\n---")

prove(E1 == E2)

x, y = BitVecs("x y", 2)

E1 = x + y

E2 = x ^ y

print("\nProve that (x + y) - (x ^ y) is NOT equivalent to 0 in 2-bit space:\n---")

prove(E1 == E2)

If we run this snippet of code, we obtain:

Prove that (x + y) - (x ^ y) is equivalent to 0 in 1-bit space:

proved

Prove that (x + y) - (x ^ y) is NOT equivalent to 0 in 2-bit space:

counterexample

[y = 3, x = 1]

The reason why this example (and many others) fails might not be obvious. It comes from the
actual limitations of the underlying theorem itself. As we have seen, the method to construct
the linear MBA equalities which justifies the MBA-Blast approach requires that the column
vectors obtained from the truth table of the bitwise expressions form a linearly dependent set
of vectors. But, in this case, we have

F =

0 0 0
0 1 1
1 0 1
1 1 0

with column vectors truth tables for:

f0(x, y) = x

f1(x, y) = y

f2(x, y) = (x⊕ y)

For the method to work, their premises must hold. This translates to the fact that the rank of
the matrix F must be strictly less than the number of columns.

In terms of linear algebra justification, we are essentially computing solutions for homogeneous
systems of linear equations and are interested in obtaining non-trivial solutions. This is only

20

possible if the rank of the matrix (bounded by the number of rows, being 2t for t the number
of variables) is strictly less than the total number of unknowns of the solution (which is equal
to the number of columns i.e. the number of bitwise expressions of the underlying linear MBA
expression). In this scenario, we have a compatible indeterminate system which has other
solutions than the trivial (indeed, the system will have an entire family of infinite solutions that
hold some given relation on the unknowns).

In this example, the rank of the matrix is 3, which is equal to the number of columns. Thus,
the homogeneous system defined will have a single solution (the trivial one), which means that
column vectors are not linearly dependent. Therefore, the theorem premise does not hold.

In conclusion, for the MBA-Blast approach to work we need to impose several restrictions to
the MBA expressions:

• They must be linear MBA expressions

• Bitwise expressions cannot contain constants other than 0 or −1.

• The truth tables for the bitwise expressions must generate a set of linearly dependent
vectors.

Moreover, the method might not work successfully if obfuscation through insertion of identities
is in place, as stated before.

2.3 MBA-Solver

2.3.1 Contributions

The research by Dongpeng Xu et al. [Xu+21] presents a semantics preserving transformation
method for reducing an MBA expression into a more digestible form to be consumed by SMT
solvers when checking for semantic equivalence against other expressions.

First, they analyze how several MBA complexity metrics affect the solving performance. The
complexity metrics considered are the following:

• MBA Type: linear, polynomial (non-linear) and non-polynomial.

• Number of Variables.

• MBA Alternation: the number of operations that connect arithmetic and bitwise opera-
tions.

• MBA Length: considering the MBA expression as a string.

• Number of Terms.

• Coefficient: how large the coefficients are in every term.

A deeper study and formalization of several MBA complexity metrics can be found in [Eyr17].

They conclude that MBA alternation is the dominant factor influencing SMT solver’s perfor-
mance. Hence, they specifically construct their semantics preserving transformation to reduce
MBA alternation. The underlying idea is that by reducing the MBA alternation of a given
complex MBA expression, SMT solvers with have a higher chance to solve them.

Next, we discuss the core components and approach proposed.

21

Signature vector

Definition 2.6. The signature vector s⃗ of a linear MBA expression is the product of the MBA
truth table matrix M and the coefficients vector v⃗.

The linear MBA truth table matrix refers to the same matrix construction presented in the
motivating Theorem 2.1.

Example 2.7. [Xu+21] For the linear MBA expression

E = 2(x ∨ y)− (¬x ∧ y)− (x ∧ ¬y)

we have the following M and v⃗

M =

x ∨ y ¬x ∧ y x ∧ ¬y

0 0 0
1 1 0
1 0 1
1 0 0

, v⃗ =

 2
−1
−1

Thus, the signature vector s⃗ is

s⃗ = Mv⃗ =

0
1
1
2

Groups of equivalent linear MBA expressions

The signature vector provides an invariant property for linear MBA expressions with the same
semantic behavior. In other words, the signature vector encodes the semantics of a group of
equivalent linear MBA expressions.

Theorem 2.8. Given two linear MBA expressions E1 and E2 and their respective signature
vectors s⃗1 and s⃗2, E1 and E2 are semantically equivalent if and only if s⃗1 and s⃗2 are equal, i.e.

E1 ≡ E2 ⇔ s⃗1 = s⃗2

Proof.

s⃗1 = s⃗2 ⇔ M1v⃗1 = M2v⃗2 ⇔ M1v⃗1 −M2v⃗2 = 0

Which can be written as

[M1 M2]

(
v⃗1
−v⃗2

)
= 0 ⇔ E1 − E2 ≡ 0 ⇔ E1 ≡ E2

22

Linear MBA expressions from signature vectors

From linear algebra, we know that any vector can be represented as a linear combination of a
set of base vectors. In our particular scenario, such base vectors can be thought as truth table
representations of a given bitwise expression on a certain number of variables of the linear MBA
expression.

Example 2.9. For two variables x, y we could construct the following canonical base by truth
table representation:

x y ¬x ∧ ¬y ¬x ∧ y x ∧ ¬y x ∧ y

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Using this base, the previous signature vector

s⃗ =

0
1
1
2

of the linear MBA expression

E = 2(x ∨ y)− (¬x ∧ y)− (x ∧ ¬y)

could be expressed as follows:

0
1
1
2

 = 0 ·

1
0
0
0

+ 1 ·

0
1
0
0

+ 1 ·

0
0
1
0

+ 2 ·

0
0
0
1

which corresponds to the following linear MBA expression:

E′ = (¬x ∧ y) + (x ∧ ¬y) + 2(x ∧ y)

By Theorem 2.8, we have that E and E′ are semantically equivalent.

Choosing the right vector base

We are interested in minimizing the MBA alternation within a given expression. Thus, we will
choose a set of base vectors that minimizes the number of bitwise expressions.

In particular, for 2 variables, the following set of normalized base vectors is chosen:

23

x y x ∧ y −1

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 1

These vectors consist of the truth table representations of the variables x, y alone, the constant
−1 and the only bitwise expression x ∧ y.

Example 2.10. To represent the previous signature vector

s⃗ =

0
1
1
2

in this normalized base, we need to solve the following system of linear equations:

0
1
1
2

 = C1 ·

0
0
1
1

+ C2 ·

0
1
0
1

+ C3 ·

0
0
0
1

+ C4 ·

1
1
1
1

which produces the following result:

C1 = 1

C2 = 1

C3 = 0

C4 = 0

Therefore,
0
1
1
2

 =

0
0
1
1

+

0
1
0
1

which corresponds to the following linear MBA expression:

E′′ = x+ y

By Theorem 2.8, we have that E, E′ and E′′ are semantically equivalent.

24

Dealing with non-linear MBA expressions

To address non-linear (either polynomial or non-polynomial) MBA expressions, the basic idea is
to simplify the linear subexpressions that conform them, down to the plain bitwise expressions
on some of the variables.

For any bitwise expression, its signature vector will be computed. This signature vector will
always be composed of 1’s and 0’s by the truth table nature of this construction for plain bitwise
expressions. Thus, an exhaustive simplification mapping table for all possible truth table values
of signature vectors for bitwise expressions is pre-computed, expressing each signature vector
in terms of the normalized base chosen to reduce MBA alternation. The signature vector for
the bitwise expression will be looked up in the mapping table and substituted by the equivalent
normalized expression.

After that, the resulting MBA expression will showcase a minimal MBA alternation complexity,
allowing for further simplifications to merge terms and produce a more concise form.

Using the previous normalized base for 2 variables, we have the following simplification table
mapping signature vectors (s⃗) to MBA expressions (E) of plain bitwise expressions:

s⃗ E

(0, 0, 1, 1) x
(0, 1, 0, 1) y
(0, 0, 0, 1) x ∧ y
(1, 1, 1, 1) −1

(0, 0, 0, 0) 0
(0, 0, 1, 0) x− (x ∧ y)
(0, 1, 0, 0) y − (x ∧ y)
(0, 1, 1, 0) x+ y − 2(x ∧ y)
(0, 1, 1, 1) x+ y − (x ∧ y)
(1, 0, 0, 0) −x− y + (x ∧ y)− 1
(1, 0, 0, 1) −x− y + 2(x ∧ y)− 1
(1, 0, 1, 0) −y − 1
(1, 0, 1, 1) −y + (x ∧ y)− 1
(1, 1, 0, 0) −x− 1
(1, 1, 0, 1) −x+ (x ∧ y)− 1
(1, 1, 1, 0) −(x ∧ y)− 1

Even if substituting bitwise expressions with their representation in the normalized base seems
to increase the length of the expression, as all of them are now expressed within the same terms,
the possibilities for merging and canceling terms appear naturally.

Example 2.11. Consider the following non-linear MBA expression:

(x ∧ ¬y) · (¬x ∧ y) + (x ∧ y) · (x ∨ y)

Let’s transform it by mapping each bitwise expression within the simplification table for 2

25

variables shown above and we obtain:

(x ∧ ¬y) · (¬x ∧ y) + (x ∧ y) · (x ∨ y) =

(x− x ∧ y) · (y − x ∧ y) + (x ∧ y) · (x+ y − x ∧ y) =

xy − x · (x ∧ y)− (x ∧ y) · y + (x ∧ y)2 + (x ∧ y) · x+ (x ∧ y) · y − (x ∧ y)2 =

xy

The interested reader can refer to [Xu+21] for a discussion on some other classical optimization
techniques used alongside the process as well as a detailed algorithm description and implemen-
tation decisions.

Moreover, a prototype tool is available2, which includes not only the source code, but also the
simplification tables for expressions on 2, 3 and 4 variables as well as the full dataset for the
testbed used throughout the evaluation.

2.3.2 Flaws and limitations

MBA alternation as the dominant factor influencing solvers’ performance

The authors analyze the impact of several MBA complexity metrics in the scalability issues
of SMT solvers to address MBA solving. The metric they decide to focus upon within their
approach is MBA alternation (i.e. the number of operations that connect arithmetic and bitwise
operations). While MBA alternation is definitely one of the dominant factors, it does not seem
to be the only one.

From the very same data and graphics they provide, it looks like both the MBA length (consid-
ering the MBA expression as a character string) and the number of terms of the MBA expression
play a similar dominant role.

Constants in bitwise expressions

As it has already been pointed out when discussing flaws in the MBA-Blast [Liu+21] simplifica-
tion approach, the MBA expressions addressed within the MBA-Solver transformation cannot
contain constants other than 0 and −1 within the bitwise expressions in them, due to the very
same reason: the possibility of using a 1-bit truth table mapping required for these bitwise
expressions relies on the n-bit to 1-bit bijective transformation for linear MBA expressions we
have presented before.

Such mapping is not be possible if we have arbitrary constants on the bitwise expressions, as
there is no possible 1-to-1 semantics preserving mapping between an n-bit constant to a 1-bit
constant other than 0 and −1.

Problem definition

While the authors state the problem of MBA simplification in general, the actual problem
they are evaluating, referred as MBA Solving throughout the paper, is actually proving the
semantic equivalence between an original ground truth MBA expression and an obfuscated MBA
expression which has been transformed into a simpler version by reducing MBA alternation.

2https://github.com/softsec-unh/MBA-Solver

26

https://github.com/softsec-unh/MBA-Solver

This is of course relevant, but it is important to remark that verifying the semantic equivalence
between different MBA expressions is a different program analysis problem than finding a sim-
plified (ideally minimal) MBA expression from an arbitrarily obfuscated one (without access to
the original non-obfuscated ground truth).

27

28

Chapter 3

Improving program synthesis based
MBA simplification reliability

3.1 Motivation

Through the study of the orthogonal approaches to reason about and simplify MBA expressions
that we have explored in the previous chapter, we have developed a better understanding of some
underlying mathematical properties of MBA expressions. Focusing on a subset of linear MBA
expressions, we are now able to produce a semantics preserving transformation (simplification)
of a target MBA expression so that SMT solvers have a better chance to handle them.

Even if such approach does not seem to derive the simplest expression possible, the nature of
this semantics preserving transformation allows us to improve the reliability of simplification
attempts based of program synthesis.

In particular, we can use this simplified expression as the reference expression against which
the semantic equivalence of a synthesized candidate can be checked and verified.

3.2 Method description

We propose the following methodology which combines symbolic execution, program synthesis
and orthogonal reasoning to address the problem of simplifying (deobfuscating) MBA expres-
sions.

• Starting with a snippet of assembly code (either from static analysis or an execution
trace), we leverage a symbolic execution engine to extract the formula which encodes the
value of a given variable (register or memory location) at the end of the obfuscated code
being analyzed, with respect to the input variables (registers and/or memory locations)
that play a role in the computation of the output variable we are targeting.

• Then, we apply classic simplification strategies to the formula retrieved in the previous
step, usually with the help of an SMT solver. These simplification strategies mainly rely
on isolated simplifications on the boolean and arithmetic subexpressions, as well as term
grouping. This simplification process is semantics preserving by nature. Thus, we arrive
to our first simplified candidate. Unfortunately, as we have discussed in Section 1.3.1, an
adversary might thwart such approach by arbitrarily increasing the syntactic complexity

29

of the obfuscated code, leading to an expression which is still far from showcasing the
underlying semantics of the code in a clear and concise way.

• To overcome these limitations, we introduce a program synthesis based simplification pro-
cess. In particular, we leverage the QSynth algorithm to derive a synthesized expression.
This expression will fit the semantic behavior of the obfuscated code based on the I/O
behavior. The I/O samples that describe the behavior of the obfuscated code are obtained
by picking a set of input values, evaluating the obfuscated expression (or emulating the
obfuscated code) and collecting the output value. Although this approach tends to work
really nice, this synthesis process does not guarantee the semantic equivalence between the
synthesized expression and the original (obfuscated) one, as it is derived from a necessarily
finite set of I/O samples.

• We could try to plug an SMT solver to check for the correctness of the synthesized expres-
sion, by attempting to prove its semantic equivalence against the original expression (or
the first simplification). However, the chance of success of the SMT solver for this task is
directly tied to the syntactic complexity of the expression against which the synthesized
candidate is being compared. This complexity can be controlled and arbitrarily increased
by the adversary, as we have discussed in 1.3.1, even for the first simplified expression.
This is due to the fact that the classic simplification strategies mainly rely on simplify-
ing boolean and arithmetic subexpressions as separate entities. Thus, they cannot break
MBA obfuscation that might have been deliberately placed at the heart of the obfuscated
code.

• In order to verify the correctness of the synthesized expression, we propose the introduction
of an extra simplification step based on the MBA-Solver orthogonal approach. Starting
from the first simplified expression, we leverage the methodology discussed in Section 2.3
to produce a second simplified expression which deliberately reduces the MBA alternation
complexity by construction, while exposing more opportunities for classic simplification
approaches to work during the process. This transformation process is semantics preserv-
ing by construction.

• Finally, now we can leverage an SMT solver to verify the correctness of the synthesized
expression by checking its semantic equivalence against the newly simplified expression.
In this case, such simplified expression is deliberately constructed to be easily digestible
by the SMT solver. Thus, making the semantic equivalence check feasible from a practical
standpoint.

At the end of the process, we end up with a verified synthesized expression than matches the
semantic behavior of the obfuscated expression (code).

Remark 3.1. In case the semantic equivalence check would not succeed, the SMT solver would
provide a counterexample (i.e. an input for which the expressions do not produce the same
output). This input can then be used to guide a subsequent program synthesis iteration, where
a candidate program will have to be synthesized accounting for the previous I/O mismatch.

The method described effectively improves the reliability of current state-of-the-art approaches
(which end up generating a synthesized candidate expression) by means of making the correct-
ness of the synthesized candidate expression to be easily verifiable.

30

Obfuscated ASM

Symbolic expression

Simplified expression I

Synthesized expression Simplified expression II

?≡

Verified synthesized expression

Symbolic execution

SMT solver

QSynthesis algorithm MBA-Solver

SMT solver

Figure 3.1: Workflow diagram of the methodology proposed

31

3.3 Practical application: a guided example

Consider the following (obfuscated) code in x86-64 assembly taken from the sample executable
file monster. In particular, this is a function with a single basic block, which consists of 1889
assembly instructions. The function receives two parameters in the registers rdi and rsi, makes
(a lot of) computations and stores the resulting value in the register rax to be returned1.

An excerpt of the first and last instructions is shown below.

0x00001149 f30f1efa endbr64

0x0000114d 55 push rbp

0x0000114e 4889e5 mov rbp, rsp

0x00001151 53 push rbx

0x00001152 48897df0 mov qword [var_10h], rdi ; arg1

0x00001156 488975e8 mov qword [var_18h], rsi ; arg2

0x0000115a 488b55e8 mov rdx, qword [var_18h]

0x0000115e 488b45f0 mov rax, qword [var_10h]

0x00001162 4c8d0402 lea r8, [rdx + rax]

0x00001166 488b45f0 mov rax, qword [var_10h]

0x0000116a 482b45e8 sub rax, qword [var_18h]

0x0000116e 4889c2 mov rdx, rax

0x00001171 488b4de8 mov rcx, qword [var_18h]

0x00001175 488b45f0 mov rax, qword [var_10h]

0x00001179 4c8d0c01 lea r9, [rcx + rax]

0x0000117d 488b45f0 mov rax, qword [var_10h]

0x00001181 482b45e8 sub rax, qword [var_18h]

[...]

0x00002b43 488d0c00 lea rcx, [rax + rax]

0x00002b47 488b45f0 mov rax, qword [var_10h]

0x00002b4b 482b45e8 sub rax, qword [var_18h]

0x00002b4f 4801c8 add rax, rcx

0x00002b52 488d0c07 lea rcx, [rdi + rax]

0x00002b56 488b45e8 mov rax, qword [var_18h]

0x00002b5a 4801c8 add rax, rcx

0x00002b5d 4801c2 add rdx, rax

0x00002b60 488b45e8 mov rax, qword [var_18h]

0x00002b64 4801d0 add rax, rdx

0x00002b67 4801c0 add rax, rax

0x00002b6a 4929c1 sub r9, rax

0x00002b6d 4c89c8 mov rax, r9

0x00002b70 4c09c0 or rax, r8

0x00002b73 5b pop rbx

0x00002b74 5d pop rbp

0x00002b75 c3 ret

Now, we will use the symbolic execution framework Miasm2 to symbolically execute this function
and retrieve the formula for the output value of the register rax with respect to the input values
in registers rdi and rsi.

To do so, we create a function that receives a path to an executable file and a start address,
and returns the symbolic expression for the register rax after symbolically executing the basic
block where the start address is located.

1https://en.wikipedia.org/wiki/X86 calling conventions#System V AMD64 ABI
2https://github.com/cea-sec/miasm

32

https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI
https://github.com/cea-sec/miasm

"""

Adapted from ./msynth/scripts/symbolic_simplification.py

"""

from miasm.analysis.binary import Container

from miasm.analysis.machine import Machine

from miasm.core.locationdb import LocationDB

from miasm.ir.symbexec import SymbolicExecutionEngine

def getRaxExpr(file_path, start_addr):

symbol table

loc_db = LocationDB()

open the binary for analysis

container = Container.from_stream(open(file_path, 'rb'), loc_db)

cpu abstraction

machine = Machine(container.arch)

init disassemble engine

mdis = machine.dis_engine(container.bin_stream, loc_db=loc_db)

initialize intermediate representation

lifter = machine.lifter_model_call(mdis.loc_db)

disassemble the function at address

asm_block = mdis.dis_block(start_addr)

lift to Miasm IR

ira_cfg = lifter.new_ircfg()

lifter.add_asmblock_to_ircfg(asm_block, ira_cfg)

init symbolic execution engine

sb = SymbolicExecutionEngine(lifter)

symbolically execute basic block

sb.run_block_at(ira_cfg, start_addr)

return the expression of rax (return value)

return sb.eval_exprid(lifter.arch.regs.RAX)

We call this function with the appropriate file path and address, and print the resulting symbolic
expression extracted.

file_path = "./monster"

addr = 0x1149

rax_exp = getRaxExpr(file_path, addr)

print(f"RAX value from symbolic execution:\n---\n{rax_exp}\n")

If we run this code, we obtain the following massive expression that encodes the computed value
of the register rax returned by the function, with respect to initial values in registers rdi and
rsi.

33

Remark 3.2. The font size for the output expression has been deliberately reduced to fit in a
single page.

RAX value from symbolic execution:

(RDI + RSI + (RDI * 0x6 + RSI * 0xFFFFFFFFFFFFFFFA + (RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) * 0x2 + (RDI + RSI + (RDI & RSI) * 0xFFFFFFFFFFFFFFFE

+ -(RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF))) * 0xFFFFFFFFFFFFFFFE + ((RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) + RDI * 0xFFFFFFFFFFFFFFFC + RSI *

0xFFFFFFFFFFFFFFFC + (RDI & RSI) * 0x2 + (RDI + (RDI & RSI) + (-RSI + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + -RSI + (RDI ^ RSI)) * 0x2 + (RDI

* 0xFFFFFFFFFFFFFFFE + RSI * 0x2 + (((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | RSI) + 0xFFFFFFFFFFFFFFFE) *

0xFFFFFFFFFFFFFFFE + (-RSI + (RDI | RSI)) * 0x2 + -(RDI & RSI) + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + (-(RDI & RSI) +

-(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + 0xFFFFFFFFFFFFFFFC) * 0x2 + ((RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) + RDI *

0xFFFFFFFFFFFFFFFE + RSI * 0xFFFFFFFFFFFFFFFE + (RDI & RSI) * 0x2 + (-(RDI & RSI) + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) *

0xFFFFFFFFFFFFFFFE + 0xFFFFFFFFFFFFFFFE) * 0x2 + (RDI * 0x3 + RSI * 0x3 + (RDI & RSI) * 0xFFFFFFFFFFFFFFFE + (RDI + (RDI & RSI) + (-RSI +

(RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + -RSI + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + (-(RDI & RSI) + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0x2 +

-(RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) + 0x2) * 0xFFFFFFFFFFFFFFFE + (RDI * 0x5 + RSI * 0x5 + (RDI & RSI) * 0xFFFFFFFFFFFFFFFE + (RDI + (RDI

& RSI) + (-RSI + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + -RSI + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + ((RDI & RSI) + RDI * 0x3 + RSI *

0xFFFFFFFFFFFFFFFD + (RSI + RDI * 0x2 + (-(RDI ^ RSI) + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + ((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0x2 +

(RDI | RSI) + 0x2) * 0xFFFFFFFFFFFFFFFE + (((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | RSI) +

0xFFFFFFFFFFFFFFFE) * 0x2 + (-RSI + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + (RDI * 0xFFFFFFFFFFFFFFFE +

RSI * 0x2 + (((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | RSI) + 0xFFFFFFFFFFFFFFFE) * 0xFFFFFFFFFFFFFFFE +

(-RSI + (RDI | RSI)) * 0x2 + -(RDI & RSI) + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0x2 + (-(RDI & RSI) + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF)

* 0x2 + -(RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) + 0x4) * 0xFFFFFFFFFFFFFFFE + -(RDI ^ RSI) + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE) | (RDI + RSI *

0xF + (RDI & RSI) * 0xFFFFFFFFFFFFFFFE + (RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFD + (RDI + (RDI & RSI) + (-RSI + (RDI |

RSI)) * 0xFFFFFFFFFFFFFFFE + -RSI + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + ((RDI & RSI) + RDI * 0x3 + RSI * 0xFFFFFFFFFFFFFFFD + (RSI + RDI *

0x2 + (-(RDI ^ RSI) + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + ((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0x2 + (RDI | RSI) + 0x2) *

0xFFFFFFFFFFFFFFFE + (((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | RSI) + 0xFFFFFFFFFFFFFFFE) * 0x2 + (-RSI +

(RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + ((RDI & RSI) + RDI * 0x5 + RSI * 0xFFFFFFFFFFFFFFFB + (RSI + RDI *

0x2 + (-(RDI ^ RSI) + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + ((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0x2 + (RDI | RSI) + 0x2) *

0xFFFFFFFFFFFFFFFE + (RDI * 0x4 + RSI * 0x3 + (RSI + (RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | RSI) + (RDI

^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0x2 + (RDI * 0x2 + RSI * 0xFFFFFFFFFFFFFFFE + (RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) * 0x2 + (RDI + RSI + (RDI

& RSI) * 0xFFFFFFFFFFFFFFFE + -(RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF))) * 0xFFFFFFFFFFFFFFFE + -(RDI ^ RSI) + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE

+ (-(RDI ^ RSI) + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + ((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0x2 + (RDI | RSI) + 0x4) * 0xFFFFFFFFFFFFFFFE +

(RDI * 0xFFFFFFFFFFFFFFFD + RSI * 0xFFFFFFFFFFFFFFFE + (RSI + (RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI |

RSI) + (RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + (-(RDI ^ RSI) + (RDI | RSI)) * 0x2 + ((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) *

0xFFFFFFFFFFFFFFFE + -(RDI | RSI) + 0xFFFFFFFFFFFFFFFC) * 0x2 + (((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI |

RSI) + 0xFFFFFFFFFFFFFFFE) * 0x2 + (-RSI + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + ((RSI & (RDI ^

0xFFFFFFFFFFFFFFFF)) + RDI * 0xFFFFFFFFFFFFFFFB + RSI * 0xFFFFFFFFFFFFFFFB + (RDI + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) *

0xFFFFFFFFFFFFFFFE + -(RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF)) + 0xFFFFFFFFFFFFFFFF) * 0x2 + (RSI + RDI * 0xFFFFFFFFFFFFFFFE + (RDI & (RSI ^

0xFFFFFFFFFFFFFFFF)) * 0x2 + (-(RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + (RSI | (RDI ^

0xFFFFFFFFFFFFFFFF))) * 0xFFFFFFFFFFFFFFFE + (RDI * 0x3 + RSI * 0xFFFFFFFFFFFFFFFE + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) *

0xFFFFFFFFFFFFFFFE + (RDI + RSI + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RSI + (RDI | (RSI ^ 0xFFFFFFFFFFFFFFFF)) + 0x1) *

0xFFFFFFFFFFFFFFFE + -(RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + (-(RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI)) * 0x2 + -(RSI | (RDI ^

0xFFFFFFFFFFFFFFFF)) + 0xFFFFFFFFFFFFFFFF) * 0x2 + (RDI * 0xFFFFFFFFFFFFFFFC + RSI * 0x3 + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) * 0x2 + (RDI

+ RSI + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RSI + (RDI | (RSI ^ 0xFFFFFFFFFFFFFFFF)) + 0x1) * 0xFFFFFFFFFFFFFFFE + -(RDI ^ RSI)) * 0x2 +

(RDI * 0xFFFFFFFFFFFFFFFE + RSI * 0xFFFFFFFFFFFFFFFE + (RSI + (RDI | (RSI ^ 0xFFFFFFFFFFFFFFFF)) + 0x1) * 0x2 + ((RSI & (RDI ^

0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | (RSI ^ 0xFFFFFFFFFFFFFFFF)) + 0xFFFFFFFFFFFFFFFE) * 0xFFFFFFFFFFFFFFFE + -(RDI

& (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI) + 0xFFFFFFFFFFFFFFFE) * 0xFFFFFFFFFFFFFFFE + (-(RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RDI ^

RSI)) * 0xFFFFFFFFFFFFFFFE + (RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF))) * 0xFFFFFFFFFFFFFFFE + (-RSI + (RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF))) *

0xFFFFFFFFFFFFFFFE + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFA) * 0xFFFFFFFFFFFFFFFE + ((RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) + RDI *

0xFFFFFFFFFFFFFFFD + RSI * 0xFFFFFFFFFFFFFFFD + (RDI + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFE + -(RSI | (RDI ^

0xFFFFFFFFFFFFFFFF)) + 0xFFFFFFFFFFFFFFFF) * 0x2 + (RSI + RDI * 0xFFFFFFFFFFFFFFFE + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) * 0x2 + (-(RDI &

(RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + (RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF))) * 0xFFFFFFFFFFFFFFFE + (-RSI + (RSI

| (RDI ^ 0xFFFFFFFFFFFFFFFF))) * 0xFFFFFFFFFFFFFFFE + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFC) * 0xFFFFFFFFFFFFFFFE + ((RSI & (RDI ^

0xFFFFFFFFFFFFFFFF)) + (-RSI + (RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF))) * 0xFFFFFFFFFFFFFFFE + -RDI + -RSI + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFE)

* 0xFFFFFFFFFFFFFFFE + (RDI * 0x2 + RSI * 0x2 + (RDI + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFE + -(RSI | (RDI ^

0xFFFFFFFFFFFFFFFF)) + 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + (-RSI + (RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF))) * 0x2 + -(RSI & (RDI ^

0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI) + 0x2) * 0x2 + (RDI * 0x4 + RSI * 0x4 + (RDI + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFE

+ -(RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF)) + 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + (RSI + RDI * 0xFFFFFFFFFFFFFFFE + (RDI & (RSI ^

0xFFFFFFFFFFFFFFFF)) * 0x2 + (-(RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI)) * 0xFFFFFFFFFFFFFFFE + (RSI | (RDI ^

0xFFFFFFFFFFFFFFFF))) * 0x2 + (RDI * 0x3 + RSI * 0xFFFFFFFFFFFFFFFE + (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFE + (RDI + RSI

+ (RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RSI + (RDI | (RSI ^ 0xFFFFFFFFFFFFFFFF)) + 0x1) * 0xFFFFFFFFFFFFFFFE + -(RDI ^ RSI)) *

0xFFFFFFFFFFFFFFFE + (-(RDI & (RSI ^ 0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI)) * 0x2 + -(RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF)) + 0xFFFFFFFFFFFFFFFF)

* 0xFFFFFFFFFFFFFFFE + (-RSI + (RSI | (RDI ^ 0xFFFFFFFFFFFFFFFF))) * 0x2 + -(RSI & (RDI ^ 0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI) + 0x4) * 0x2

+ (RDI * 0xFFFFFFFFFFFFFFFC + RSI * 0x4 + (RSI + RDI * 0x2 + (-(RDI ^ RSI) + (RDI | RSI)) * 0xFFFFFFFFFFFFFFFE + ((RDI | RSI) ^

0xFFFFFFFFFFFFFFFF) * 0x2 + (RDI | RSI) + 0x2) * 0x2 + (RDI * 0xFFFFFFFFFFFFFFFD + RSI * 0xFFFFFFFFFFFFFFFE + (RSI + (RSI & (RDI ^

0xFFFFFFFFFFFFFFFF)) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | RSI) + (RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + (-(RDI ^ RSI) +

(RDI | RSI)) * 0x2 + ((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + -(RDI | RSI) + 0xFFFFFFFFFFFFFFFC) * 0xFFFFFFFFFFFFFFFE +

(((RDI | RSI) ^ 0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | RSI) + 0xFFFFFFFFFFFFFFFE) * 0xFFFFFFFFFFFFFFFE + (-RSI + (RDI |

RSI)) * 0x2 + -(RDI & RSI) + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0x2 + (RDI * 0xFFFFFFFFFFFFFFFE + RSI * 0x2 + (((RDI | RSI) ^

0xFFFFFFFFFFFFFFFF) * 0xFFFFFFFFFFFFFFFE + -RDI + -(RDI | RSI) + 0xFFFFFFFFFFFFFFFE) * 0xFFFFFFFFFFFFFFFE + (-RSI + (RDI | RSI)) * 0x2 +

-(RDI & RSI) + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0x2 + (-(RDI & RSI) + -(RDI ^ RSI) + 0xFFFFFFFFFFFFFFFF) * 0x2 + (-(RSI & (RDI ^

0xFFFFFFFFFFFFFFFF)) + (RDI ^ RSI)) * 0x2 + -(RDI | (RSI ^ 0xFFFFFFFFFFFFFFFF)) + 0x5)

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Then, we plug an SMT solver to produce a first simplified expression. Again, we use Z3
through its convenient Python API. Concretely, after translating the Miasm expression into
Z3 ’s representation, we call the Z3 ’s method simplify.

This procedure will essentially apply several classic simplification strategies to the boolean and
arithmetic subexpressions. Another significant outcome achieved through this step will be the
grouping of terms.

34

from z3 import *

from miasm.ir.translators.z3_ir import TranslatorZ3

translator = TranslatorZ3()

rax_exp_z3 = translator.from_expr(rax_exp)

rax_exp_z3_simp = simplify(rax_exp_z3)

print(f"RAX after z3 simplification:\n---\n{rax_exp_z3_simp}\n")

Running this code, we obtain our first simplified expression. We can easily observe a substantial
reduction in total terms and a more comfortable term grouping.

RAX after z3 simplification:

128 +

49*RDI +

73*RSI +

18446744073709551592*~(~RSI | RDI) +

18446744073709551496*~(~RDI | ~RSI) +

126*(RDI | RSI) +

18446744073709551570*(RDI ^ RSI) +

128*~(RDI | RSI) |

59 +

RDI +

147*RSI +

18446744073709551570*~(~RDI | ~RSI) +

18446744073709551489*~(~RSI | RDI) +

18446744073709551596*(RDI | RSI) +

80*~(RDI | RSI) +

160*~(~RDI | RSI) +

60*(RSI | ~RDI) +

18446744073709551535*(RDI | ~RSI)

Nevertheless, this expression still showcases a huge syntactic complexity: we are not able to
grasp its semantic behavior at all.

Next, we leverage the QSynth algorithm implemented in msynth3 to produce a synthesized
expression which encodes the semantic behavior of the obfuscated expression (code).

Remark 3.3. In this example, we deliberately synthesize the original extracted expression
instead of the first simplified iteration. This is done to emphasize the fact that through pro-
gram synthesis approaches we are able to reason about the semantic behavior regardless of the
syntactic complexity of the expression (code) analyzed.

from msynth import Simplifier

Path for the serialized oracle tables for QSynth

oracle_path = "./msynth/oracle.pickle"

Initialize QSynth-based simplifier

synthSimplifier = Simplifier(oracle_path)

3https://github.com/mrphrazer/msynth

35

https://github.com/mrphrazer/msynth

rax_exp_synth = synthSimplifier.simplify(rax_exp)

rax_exp_synth_z3 = translator.from_expr(rax_exp_synth)

print(f"RAX after synthesis simplification:\n---\n{rax_exp_synth_z3}\n")

After running this code, we obtain the synthesized candidate expression.

RAX after synthesis simplification:

RDI + RSI | RDI ^ RSI

At this point, we have the candidate expression

RDI +RSI ∨RDI ⊕RSI

that has been synthesized to match the I/O behavior of the obfuscated code. Despite the
promising result, we cannot guarantee the correctness of the synthesized expression, as the
construction method necessarily relies on a finite set of I/O pairs being considered.

We would like to verify that the synthesized expression (rax exp synth z3) is semantically equiv-
alent to the original expression (rax exp z3), but this is unfeasible from a practical stand-
point, as the SMT solver cannot handle such equivalence checking in a reasonable amount of
time. We could think of checking its equivalence against the previously simplified expression
(rax exp z3 simp), which was obtained through a semantics preserving transformation. How-
ever, this expression is still way too complex (from a syntactic point of view) for the SMT solver
to handle within an equivalence checking against the synthesized expression.

In order to verify the semantic equivalence of the synthesized expression, we will use the method-
ology from MBA-Solver [Xu+21] to produce another level of simplification through a semantics
preserving transformation that will reduce the MBA alternation of the resulting expression to
boost the performance of the SMT solver when dealing with it.

Note that the simplified expression rax exp z3 simp is a non-polynomial MBA expression which
is composed of two different linear MBA expression being ORed together.

128 + 49*RDI + 73*RSI + 18446744073709551592*~(~RSI | RDI) +

18446744073709551496*~(~RDI | ~RSI) + 126*(RDI | RSI) + 18446744073709551570*(RDI

^ RSI) + 128*~(RDI | RSI)}

↪→

↪→

|

59 + RDI + 147*RSI + 18446744073709551570*~(~RDI | ~RSI) + 18446744073709551489*~(~RSI

| RDI) + 18446744073709551596*(RDI | RSI) + 80*~(RDI | RSI) + 160*~(~RDI | RSI) +

60*(RSI | ~RDI) + 18446744073709551535*(RDI | ~RSI)

↪→

↪→

The MBA-Solver implementation prototype4 works by passing both the obfuscated and the
ground truth expressions, and then solving them (i.e. checking their semantic equivalence)
after applying the simplification reducing MBA alternation complexity. In our case, we just
want to perform the simplification step.

4https://github.com/softsec-unh/MBA-Solver

36

https://github.com/softsec-unh/MBA-Solver

Thus, we create a custom function that will just simplify linear MBA expressions. Then, we
use this code to simplify the linear MBA subexpressions at each side of the OR.

import sys

sys.path.append("./MBA-Solver/tools")

from mba_string_operation import verify_mba_unsat, variable_list

from svector_simplify import SvectorSimplify

from truthtable_search_simplify import PMBASimplify

def just_simplify_lmba(datafile):

svObj = SvectorSimplify()

with open(datafile, "rt") as fr:

for line in fr:

if "#" not in line:

cmbaExpre = line.strip()

vnumber = len(variable_list(cmbaExpre))

simExpre = svObj.standard_simplify(cmbaExpre, vnumber)

print(simExpre)

just_simplify_lmba("./monster.txt")

As you can observe, it will consume linear MBA expressions from a (plain text) data file passed
as parameter. In particular for this example, we called it monster.txt.

Let’s create this file, which will contain the two linear MBA subexpressions we are targeting.

Remark 3.4. We need to massage the expressions from their Z3 representation for them to be
consumed by the MBA-Solver prototype code:

• Replace variables names: RDI → x,RSI → y

• Substitute the big numbers from their unsigned representation (Z3 ’s native) to their
signed counterparts. This is currently required due to a type error from an inconsistent
use of NumPy in the current MBA-Solver prototype implementation, probably through a
non-handled implicit casting.

After these technical modifications, we create the file monster.txt with the two linear MBA
subexpressions in plain text as follows:

left sub-expression of OR operation

128+49*x+73*y-24*~(~y|x)-120*~(~x|~y)+126*(x|y)-46*(x^y)+128*~(x|y)

right sub-expression of OR operation

59+x+147*y-46*~(~x|~y)-127*~(~y|x)-20*(x|y)+80*~(x|y)+160*~(~x|y)+60*(y|~x)-81*(x|~y)

Remark 3.5. Lines with # are ignored by the file parser.

When we run the previous code, the output is produced almost immediately. We can now
retrieve the two simplified subexpressions.

1*(x^y)

1*~(x|~y)+1*(x&~y)+2*(x&y)

37

As we can see, the simplified subexpressions are:

lor = x ∧ y

ror = ¬(x ∨ ¬y) + (x ∧ ¬y) + 2(x ∧ y)

Now, the total simplified expression obtained through the semantics preserving transformation
from MBA-Solver can be created simply by ORing together the two simplified subexpressions
retrieved above.

Finally, let’s plug the original variable names back and check that we can verify the semantic
equivalence between the synthesized expression and the newly simplified one.

RDI, RSI = BitVecs("RDI RSI", 64)

l_or = RDI^RSI

r_or = ~(RDI|~RSI) + (RDI&~RSI) + 2*(RDI&RSI)

rax_exp_z3_simp_transform = l_or | r_or

print(f"RAX after MBA-Solver simplification on z3 simplified

expression:\n---\n{rax_exp_z3_simp_transform}\n")↪→

print(f"RAX synthesized candidate expression (recall) :\n---\n{rax_exp_synth_z3}\n")

print("Prove that synthesized candidate and MBA-Solver simplified expression are

equivalent:\n---")↪→

prove(rax_exp_z3_simp_transform == rax_exp_synth_z3)

If we run the code, we observe that it successfully verifies the semantic equivalence of the two
expressions almost immediately.

RAX after MBA-Solver simplification on z3 simplified expression:

RDI ^ RSI | ~(RDI | ~RSI) + (RDI & ~RSI) + 2*(RDI & RSI)

RAX synthesized candidate expression (recall) :

RDI + RSI | RDI ^ RSI

Prove that synthesized candidate and MBA-Solver simplified expression are equivalent:

proved

Therefore, we have proved that the initial heavily obfuscated assembly code actually represents
the following extremely simple semantic behavior:

RAX = RDI +RSI ∨RDI ⊕RSI

In other words, the obfuscated function simply performs a 64-bit OR operation on the values
obtained after ADDing and XORing the two 64-bit inputs, respectively.

38

3.4 Limitations

On the one hand, this methodology encompasses a process relying on oracle-guided program
synthesis for the generation of candidate expressions that match the I/O behavior of the obfus-
cated code. Thus, the very same limitations for such a process that were mentioned in Section
1.3.2 apply.

In terms of our specific contribution incorporating orthogonal reasoning to help verifying the
correctness of the synthesized candidates, the core limitations come more from a practical
standpoint. The prototype implementation for MBA-Solver is exactly that; a prototype.

Indeed, we have already found some more or less problematic issues when plugging it into
our workflow, from having to adapt the variable names into hardcoded ones to needing to
reformulate Z3 ’s expressions by changing unsigned values to signed counterparts in order to
avoid triggering a bug in its integration with NumPy.

39

40

Conclusions

The main goal of this project was to study and analyze orthogonal approaches to symbolic
execution and program synthesis for simplification of MBA expressions in the context of code
deobfuscation. As a secondary goal, we wanted to review recent research literature in this regard
and apply it to the problem of MBA simplification in practical scenarios. We have successfully
accomplished these objectives through a set of specific achievements.

We introduced the fundamental theoretical concepts and practical mechanisms to contextual-
ize the study of MBA expressions in the field of code obfuscation as well as state-of-the-art
deobfuscation approaches and techniques.

Throughout the study and analysis of orthogonal approaches for MBA simplification, we un-
veiled the most relevant contributions by [Liu+21] and [Xu+21]. We also pointed out some
flaws and limitations that were not contemplated in the original research papers.

We have proposed a novel methodology to integrate contributions from the orthogonal ap-
proaches analyzed into a simplification workflow, which already combined symbolic execution
and program synthesis. Our proposal leverages a semantics preserving transformation on the
obfuscated expression by means of reducing its MBA alternation complexity. This transfor-
mation enables an SMT solver to deal with such expressions in practice, leading to a feasible
verification of the semantic correctness of a synthesized candidate expression.

Finally, we have tested and validated our methodology in a lab environment, providing a detailed
guided example to showcase its workflow in a practical scenario. Starting from an arbitrarily
obfuscated snippet of assembly code, we advance all the way down to recovering its semantics
through a synthesized expression which is verified to be semantically equivalent.

Future work

From a theoretical standpoint, there is clearly still a lot of research that needs to be done to
improve our knowledge of MBA expressions in general, and with respect to their underlying
mathematical properties in particular. For instance, current orthogonal approaches only address
properties of linear MBA expressions (or the embedded linear subexpressions for non-linear
MBA expressions), but there is not any known research published on the possibility of extracting
some valuable information, invariant properties or semantics preserving transformations that
rely on the mathematical structure of non-linear MBA expressions.

From a practical standpoint, while we have great frameworks for symbolic execution and rea-
sonably good prototypes for program synthesis and orthogonal approaches, we are still far from
having fully integrated software systems that provide all the required mechanisms to build au-
tomated and reliable tooling that can handle any kind of MBA obfuscated expression from a
more holistic point of view.

41

42

Bibliography

[BA06] Sorav Bansal and Alex Aiken. “Automatic Generation of Peephole Superoptimiz-
ers”. In: SIGOPS Oper. Syst. Rev. 40.5 (Oct. 2006), pp. 394–403. issn: 0163-5980.
doi: 10.1145/1168917.1168906. url: https://doi.org/10.1145/1168917.1168
906.

[Ban+16] Sebastian Banescu et al. “Code Obfuscation against Symbolic Execution Attacks”.
In: Proceedings of the 32nd Annual Conference on Computer Security Applications.
ACSAC ’16. Los Angeles, California, USA: Association for Computing Machinery,
2016, pp. 189–200. isbn: 9781450347716. doi: 10.1145/2991079.2991114. url:
https://doi.org/10.1145/2991079.2991114.

[Bio+17] Fabrizio Biondi et al. “Effectiveness of Synthesis in Concolic Deobfuscation”. In:
Computers and Security 70 (Sept. 2017), pp. 500–515. doi: 10.1016/j.cose.2017
.07.006. url: https://hal.inria.fr/hal-01241356.

[Bla+17] Tim Blazytko et al. “Syntia: Synthesizing the Semantics of Obfuscated Code”.
In: 26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, Aug. 2017, pp. 643–659. isbn: 978-1-931971-40-9. url: ht
tps://www.usenix.org/conference/usenixsecurity17/technical-sessions

/presentation/blazytko.

[DCC20] Robin David, Luigi Coniglio, and Mariano Ceccato. “QSynth - A Program Synthesis
based approach for Binary Code Deobfuscation”. In: Jan. 2020. doi: 10.14722/ba
r.2020.23009.

[Eyr17] Ninon Eyrolles. “Obfuscation with Mixed Boolean-Arithmetic Expressions : recon-
struction, analysis and simplification tools”. Theses. Université Paris-Saclay, June
2017. url: https://tel.archives-ouvertes.fr/tel-01623849.

[GPS17] Sumit Gulwani, Alex Polozov, and Rishabh Singh. Program Synthesis. Vol. 4. NOW,
Aug. 2017, pp. 1–119. url: https://www.microsoft.com/en-us/research/publ
ication/program-synthesis/.

[GT11] Patrice Godefroid and Ankur Taly. Automated Synthesis of Symbolic Instruction
Encodings from I/O Samples. Tech. rep. MSR-TR-2011-123. Nov. 2011. url: http
s://www.microsoft.com/en-us/research/publication/automated-synthesis

-of-symbolic-instruction-encodings-from-io-samples/.

[Gul+11] Sumit Gulwani et al. “Synthesis of Loop-Free Programs”. In: PLDI’11, June 4-8,
2011, San Jose, California, USA. June 2011. url: https://www.microsoft.com
/en-us/research/publication/synthesis-loop-free-programs/.

[Gul10] Sumit Gulwani. “Dimensions in Program Synthesis”. In: PPDP ’10 Hagenberg, Aus-
tria. Jan. 2010. url: https://www.microsoft.com/en-us/research/publicatio
n/dimensions-program-synthesis/.

43

https://doi.org/10.1145/1168917.1168906
https://doi.org/10.1145/1168917.1168906
https://doi.org/10.1145/1168917.1168906
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1016/j.cose.2017.07.006
https://doi.org/10.1016/j.cose.2017.07.006
https://hal.inria.fr/hal-01241356
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://doi.org/10.14722/bar.2020.23009
https://doi.org/10.14722/bar.2020.23009
https://tel.archives-ouvertes.fr/tel-01623849
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/automated-synthesis-of-symbolic-instruction-encodings-from-io-samples/
https://www.microsoft.com/en-us/research/publication/automated-synthesis-of-symbolic-instruction-encodings-from-io-samples/
https://www.microsoft.com/en-us/research/publication/automated-synthesis-of-symbolic-instruction-encodings-from-io-samples/
https://www.microsoft.com/en-us/research/publication/synthesis-loop-free-programs/
https://www.microsoft.com/en-us/research/publication/synthesis-loop-free-programs/
https://www.microsoft.com/en-us/research/publication/dimensions-program-synthesis/
https://www.microsoft.com/en-us/research/publication/dimensions-program-synthesis/

[JGY15] Xiangyang Jia, Carlo Ghezzi, and Shi Ying. “Enhancing Reuse of Constraint So-
lutions to Improve Symbolic Execution”. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis. ISSTA 2015. Baltimore, MD, USA:
Association for Computing Machinery, 2015, pp. 177–187. isbn: 9781450336208.
doi: 10.1145/2771783.2771806. url: https://doi.org/10.1145/2771783.2771
806.

[JXY08] Johnson Harold Joseph, Gu Yuan Xiang, and Zhou Yongxin. “System And Method
For Interlocking To Protect Software-mediated Program And Device Behaviours”.
Patent Application WO 2008/101341 A1 (World Intellectual Property Organiza-
tion). Aug. 28, 2008. url: https://lens.org/186-219-911-458-517.

[Liu+21] Binbin Liu et al. “MBA-Blast: Unveiling and Simplifying Mixed Boolean-Arithmetic
Obfuscation”. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 1701–1718. isbn: 978-1-939133-24-3. url: https://ww
w.usenix.org/conference/usenixsecurity21/presentation/liu-binbin.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by C. R. Ra-
makrishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 337–340. isbn: 978-3-540-78800-3.

[Men+21] Grégoire Menguy et al. “Search-Based Local Black-Box Deobfuscation: Under-
stand, Improve and Mitigate”. In: Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’21. Virtual Event, Re-
public of Korea: Association for Computing Machinery, 2021, pp. 2513–2525. isbn:
9781450384544. doi: 10.1145/3460120.3485250. url: https://doi.org/10.114
5/3460120.3485250.

[Mon20] Arnau Gàmez i Montolio. “Code deobfuscation by program synthesis-aided simpli-
fication of Mixed Boolean-Arithmetic expressions”. Bachelor’s Thesis. 2020. url:
http://diposit.ub.edu/dspace/handle/2445/176925.

[PRV11] Corina S. Păsăreanu, Neha Rungta, and Willem Visser. “Symbolic Execution with
Mixed Concrete-Symbolic Solving”. In: Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis. ISSTA ’11. Toronto, Ontario, Canada:
Association for Computing Machinery, 2011, pp. 34–44. isbn: 9781450305624. doi:
10.1145/2001420.2001425. url: https://doi.org/10.1145/2001420.2001425.

[Riv01] Ronald L. Rivest. “Permutation Polynomials Modulo 2w”. In: Finite Fields and
Their Applications 7.2 (2001), pp. 287–292. issn: 1071-5797. doi: https://doi.o
rg/10.1006/ffta.2000.0282. url: http://www.sciencedirect.com/science/a
rticle/pii/S107157970090282X.

[Rol14] Rolf Rolles. Program Synthesis in Reverse Engineering. Dec. 15, 2014. url: https
://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in

-reverse-engineering (visited on 06/05/2020).

[SBP18] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. “Symbolic Deobfus-
cation: From Virtualized Code Back to the Original”. In: Detection of Intrusions
and Malware, and Vulnerability Assessment. Ed. by Cristiano Giuffrida, Sébastien
Bardin, and Gregory Blanc. Cham: Springer International Publishing, 2018, pp. 372–
392. isbn: 978-3-319-93411-2.

[SS15] Florent Saudel and Jonathan Salwan. “Triton: A Dynamic Symbolic Execution
Framework”. In: Symposium sur la sécurité des technologies de l’information et des
communications. SSTIC. Rennes, France, June 2015, pp. 31–54.

44

https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/2771783.2771806
https://lens.org/186-219-911-458-517
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/3460120.3485250
http://diposit.ub.edu/dspace/handle/2445/176925
https://doi.org/10.1145/2001420.2001425
https://doi.org/10.1145/2001420.2001425
https://doi.org/https://doi.org/10.1006/ffta.2000.0282
https://doi.org/https://doi.org/10.1006/ffta.2000.0282
http://www.sciencedirect.com/science/article/pii/S107157970090282X
http://www.sciencedirect.com/science/article/pii/S107157970090282X
https://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
https://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
https://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering

[War12] Henry S. Warren. Hacker’s Delight. 2nd. Addison-Wesley Professional, 2012. isbn:
0321842685.

[Xu+21] Dongpeng Xu et al. “Boosting SMT Solver Performance on Mixed-Bitwise-Arithmetic
Expressions”. In: Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation. PLDI 2021. Association for
Computing Machinery. New York, NY, USA: Association for Computing Machin-
ery, 2021, 651–664. isbn: 9781450383912. doi: 10.1145/3453483.3454068. url:
https://doi.org/10.1145/3453483.3454068.

[Zho+07] Yongxin Zhou et al. “Information Hiding in Software with Mixed Boolean-Arithmetic
Transforms”. In: Information Security Applications. Ed. by Sehun Kim, Moti Yung,
and Hyung-Woo Lee. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 61–
75. isbn: 978-3-540-77535-5.

[ZM06] Yongxin Zhou and Alec Main. Diversity Via Code Transformations: A Solution For
NGNA Renewable Security. Tech. rep. The NCTA Technical Papers, 2006.

45

https://doi.org/10.1145/3453483.3454068
https://doi.org/10.1145/3453483.3454068

46

Appendices

A Proposed objectives

A.1 Principal

• Study and analysis of orthogonal approaches to symbolic execution and program synthesis
for simplification of MBA expressions.

A.2 Secondary

• Review and apply recent orthogonal approaches for MBA simplification.

A.3 Specifics

• Study and review the paperMBA-Blast: Unveiling and Simplifying Mixed Boolean-Arithmetic
Obfuscation [Liu+21].

• Study and review the paper Boosting SMT Solver Performance on Mixed-Bitwise-Arithmetic
Expressions [Xu+21].

• Test and validate new proposals in a lab environment.

47

B Logistics

B.1 Temporal planning

The project was divided in concrete tasks, each one with an allocated amount of time to be
completed. The concrete task breaking and timing allocation is presented as a Gantt diagram
in Figure B.1.

Figure B.1: Gantt diagram representing the project’s planning

B.2 Report

The report has been written in LATEX. We used the online web application Overleaf as the
editor. The project was synced with a git repository stored at GitHub. This allowed us to
manage a version control for the report itself, as well as being able to work offline with a local
cloned version of the repository if needed.

B.3 Contact with supervisor

Due to the great specificity of the project’s topic, the work has been carried out completely
independently. Contact with supervisor has been sporadic, mainly to inform of the incremental
advances in the report and collect feedback.

48

	Introduction
	Mixed Boolean-Arithmetic expressions
	Fundamentals
	Polynomial MBA expressions
	Linear MBA expressions

	MBA expressions in the context of code obfuscation
	Obfuscation of expressions
	Obfuscation of constants

	Code deobfuscation through MBA simplification
	Symbolic execution
	Program synthesis

	Analysis of recent orthogonal approaches to MBA simplification
	Motivation
	Generating new linear MBA equalities

	MBA-Blast
	Contributions
	Flaws and limitations

	MBA-Solver
	Contributions
	Flaws and limitations

	Improving program synthesis based MBA simplification reliability
	Motivation
	Method description
	Practical application: a guided example
	Limitations

	Conclusions
	Bibliography
	Appendices
	Proposed objectives
	Principal
	Secondary
	Specifics

	Logistics
	Temporal planning
	Report
	Contact with supervisor

