
Treball final de grau

GRAU DE MATEMÀTIQUES
GRAU D’ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

Code deobfuscation by program
synthesis-aided simplification of

Mixed Boolean-Arithmetic
expressions

Autor: Arnau Gàmez i Montolio

Directors: Prof. Raúl Roca Cánovas
Dr. Antoni Benseny Ardiaca
Dr. Mario Reyes De Los Mozos

Realitzat a: Departament de Matemàtiques i Informàtica
Fundació Eurecat

Barcelona, 21 de juny de 2020

Abstract

This project studies the theoretical background of Mixed Boolean-Arithmetic (MBA) ex-
pressions as well as its practical applicability within the field of code obfuscation, which is
a technique used both by malware threats and software protection in order to complicate
the process of reverse engineering (parts of) a program.

An MBA expression is composed of integer arithmetic operators, e.g. (+,−, ∗) and
bitwise operators, e.g. (∧,∨,⊕,¬). MBA expressions can be leveraged to obfuscate the
data-flow of code by iteratively applying rewrite rules and function identities that compli-
cate (obfuscate) the initial expression while preserving its semantic behavior. This possi-
bility is motivated by the fact that the combination of operators from these different fields
do not interact well together: we have no rules (distributivity, factorization. . .) or general
theory to deal with this mixing of operators.

Current deobfuscation techniques to address simplification of this type of data-flow
obfuscation are limited by being strongly tied to syntactic complexity. We explore novel
program synthesis approaches for addressing simplification of MBA expressions by rea-
soning on the semantics of the obfuscated expressions instead of syntax, discussing their
applicability as well as their limits.

We present our own tool r2syntia that integrates Syntia, an open source program syn-
thesis tool, into the reverse engineering framework radare2 in order to retrieve the se-
mantics of obfuscated code from its Input/Output behavior. Finally, we provide some
improvement ideas and potential areas for future work to be done.

2010 Mathematics Subject Classification. 68R01, 03B70, 08A70, 68Q42, 68Q55

Resum

Aquest projecte estudia el rerefons teòric de les expressions Mixtes Booleanes-Aritmètiques
(MBA) així com la seva aplicació pràctica en el camp de l’ofuscació de codi, una tècnica
usada tant per les amenaces de programari maliciós (malware) com pels sistemes de pro-
tecció de programari, per tal de complicar el procés d’enginyeria inversa sobre la totalitat
(o parts) d’un programari.

Una expressió MBA està formada per operadors aritmètics sobre enters, per exemple
(+,−, ∗) i operadors bit a bit, per exemple (∧,∨,⊕,¬). Les expressions MBA es poden
aprofitar per ofuscar el flux de dades del codi aplicant iterativament regles de reescriptu-
ra i identitats de funcions que compliquen (ofusquen) l’expressió inicial, al mateix temps
que es preserva el seu comportament semàntic. Aquesta possibilitat està motivada pel fet
que la combinació d’operadors d’aquests dos camps diferents no interactuen gaire bé: no
tenim regles (distributivitat, factorització. . .) o una teoria general per tractar amb aquests
operadors barrejats.

Les tècniques actuals de desofuscació de codi per tractar la simplificació d’aquest ti-
pus d’ofuscació del flux de dades estan limitades pel fet d’estar fortament lligades a la
complexitat sintàctica. Explorem nous enfocaments basats en síntesi de programes per tal
d’adreçar la qüestió de simplificar expressions MBA a partir d’un raonament al voltant
del comportament semàntic de les expressions ofuscades, en lloc de centrar-nos en la seva
representació sintàctica, tot discutint l’aplicabilitat i limitacions d’aquests.

Presentem la nostra pròpia eina r2syntia que integra Syntia, una eina de codi obert per
síntesi de programes, en el programari d’enginyeria inversa radare2 per tal d’obtenir la
semàntica de codi ofuscat a partir del seu comportament d’Entrada/Sortida. Finalment,
proposem algunes possibles millores i diferents àrees d’interès per a un treball futur.

Resumen

Este proyecto estudia el trasfondo teórico de las expresiones Mixtas Booleanas-Aritméticas
(MBA) así como su aplicación práctica en el campo de la ofuscación de código, una técnica
usada tanto por las amenazas de programas maliciosos (malware) como por los sistemas
de protección de programas, con el objetivo de complicar el proceso de ingeniería inversa
sobre la totalidad (o partes) de un programa.

Una expresión MBA está formada por operadores aritméticos sobre enteros, por ejem-
plo (+,−, ∗) y operadores bit a bit, por ejemplo (∧,∨,⊕,¬). Las expresiones MBA se
puede aprovechar para ofuscar el flujo de datos del código aplicando iterativamente re-
glas de reescritura e identidades de funciones que complique (ofusquen) la expresión
inicial, al mismo tiempo que se preserva su comportamiento semántico. Esta posibilidad
está motivada por el hecho que la combinación de operadores de estos dos campos dife-
rentes no interactúan demasiado bien: no tenemos reglas (distributividad, factorización. . .)
o una teoría general para tratar con estos operadores mezclados.

Las técnicas actuales de desofuscación de código para tratar la simplificación de este
tipo de ofuscación de flujo de datos están limitadas por el hecho de estar fuertemente
ligadas a la complejidad sintáctica. Exploramos nuevos enfoques basados en síntesis de
programas para poder abordar la cuestión de simplificar expresiones MBA a partir de
un razonamiento alrededor del comportamiento semántico de las expresiones ofuscadas,
en lugar de centrarnos en su representación sintáctica, así discutiendo su aplicabilidad y
limitaciones propias.

Presentamos nuestra propia herramienta r2syntia que integra Syntia, una herramienta
de código abierto para síntesis de programas, con el programa de ingeniería inversa rada-
re2 con el objetivo de obtener la semántica de código ofuscado a partir de su comportami-
ento de Entrada/Salida. Finalmente, proponemos algunas posibles mejores y diferentes
áreas de interés para un trabajo futuro.

Contents

Introduction 1

1 Code obfuscation 5
1.1 Context . 5
1.2 Survey of obfuscation techniques . 6

1.2.1 Data-flow based . 6
1.2.2 Control-flow based . 9
1.2.3 Mixed data-flow and control-flow based 10

1.3 Assessing the quality of code obfuscation . 10
1.3.1 Complexity metrics of a program . 11
1.3.2 Metrics for obfuscation . 11
1.3.3 Attack model from Abstract Interpretation 12

1.4 Fundamentals of code deobfuscation . 12
1.5 Discussion: academic vs practical code deobfuscation 15

2 Mixed Boolean-Arithmetic expressions 17
2.1 Fundamentals . 17

2.1.1 Polynomial MBA expressions . 17
2.2 Obfuscation with MBA expressions . 19

2.2.1 Obfuscation of expressions . 19
2.2.2 Opaque constant . 20
2.2.3 Generating new linear MBA equalities 21
2.2.4 Obfuscation vs Cryptography . 23

2.3 Complexity . 24
2.3.1 Incompatibility of operators . 24
2.3.2 DAG representation . 25
2.3.3 Metrics . 25

2.4 Simplification . 29
2.4.1 Context . 29
2.4.2 Bit-blasting approach . 30
2.4.3 Symbolic approach . 32

v

3 Program synthesis for code deobfuscation 33
3.1 Context . 33
3.2 Fundamentals of program synthesis . 34

3.2.1 Introduction . 34
3.2.2 Inductive oracle-guided program synthesis methods 35
3.2.3 Practical considerations . 36

3.3 Existing work . 38
3.3.1 Syntia: MCTS based stochastic program synthesis 39
3.3.2 QSynth: Offline enumerative program synthesis 40

3.4 Limitations . 42

4 Integration of Syntia within radare2 45
4.1 Implementation . 45

4.1.1 Components . 45
4.1.2 Integration . 47

4.2 Testing . 48
4.2.1 Experimental environment . 48
4.2.2 Description . 49
4.2.3 Syntia configuration . 49
4.2.4 Results . 50
4.2.5 Comparison . 50
4.2.6 Improvement proposals . 52

Conclusions 53

Bibliography 55

Appendices 59
A Guided example . 59
B Planning . 67
C Methodology . 70

C.1 Individual organization . 70
C.2 Code and report . 70
C.3 Contact with directors . 70

Introduction

Code obfuscation is the process of transforming an input program P into a functionally
equivalent program P′ which is harder to analyze and to extract information than from
the initial program P.

We find two clearly differentiated areas in which code obfuscation is commonly and
widely used: malware threats and (commercial) software protection. The desired tech-
nical outcome is the same for both cases: complicate the process of reverse engineering
the final product (software) and therefore difficult the understanding of the workings and
intention of initial code. However, the motivation can deeply vary. On the one hand,
malware threats leverage obfuscation in order to hide malicious payloads and increase the
total time being undetected. On the other hand, commercial software protection is usually
intended to protect intellectual property and prevent illegal distribution of non-registered
or non-licensed copies. Thus, code obfuscation is an important part of any modern Digital
Rights Management technology solution.

Many different code obfuscation techniques exist with their own particularities. Never-
theless, the general idea is as follows: mess with program’s control-flow and/or data-flow
at different abstraction levels (source code, compiled binary, intermediate representation)
on different target units (whole program, function, basic block). It is important to note
that different techniques can be mixed together to increase the complexity of the resulting
obfuscated code in an even more unpredictable way.

Code deobfuscation is the process of transforming an obfuscated (piece of) program
P′ into a (piece of) program P′′ that is easier to analyze than P′. Ideally, we would like
to have P′′ ≈ P, where P represents the original non-obfuscated program code. This is
rarely possible to guarantee, mainly because the analyst doing the deobfuscation process
almost never has access to original code to check against. Moreover, usually the analyst is
just interested in some specific parts of the program rather than the whole program. The
analyst might also be interested in understanding the code rather than reconstructing a
functional binary.

State-of-the-art code deobfuscation techniques rely on symbolic execution, taint anal-
ysis and a combination of them. Symbolic execution is a technique that lets the analyst
transform the control-flow and data-flow of the program into symbolic expressions. Taint

1

analysis is a technique that lets the analyst know at each program point what part of
memory or registers are controllable by the user input.

These techniques have been shown to be promising to address control-flow based ob-
fuscation, in which we need to check the satisfiability of the obtained symbolic boolean
condition. However, when analyzing data-flow based obfuscation (like Mixed Boolean-
Arithmetic or virtualized handlers behavior), we are interested in finding a simpler se-
mantically equivalent expression rather than checking for its satisfiability. We find that
these techniques are heavily dependent on the syntactic complexity of the code being an-
alyzed. Thus, an adversary might thwart the analysis capabilities by arbitrarily increasing
the syntactic complexity of the obfuscated code.

In order to overcome the scalability issues of increased syntactic complexity and,
specifically, to be able to address data-flow based code obfuscation techniques, we would
like to be able to reason about the semantics of the code instead of syntax. Some work
has been recently done in that direction. Mainly, trying to incorporate program synthesis
techniques to the deobfuscation process in order to synthesize the semantics of a particu-
lar snippet of code, presumably obfuscated.

Although there has been some progress recently, there is still a huge lack of both theo-
retical foundations and practical tools to address the question of simplifying/deobfuscating
generic Mixed Boolean-Arithmetic expressions.

Report organization

In Chapter 1 we provide foundational context and a general overview of basic code ob-
fuscation techniques, introducing different metrics and models to measure the quality of
a code obfuscation transformation. We also present some important aspects to consider
when dealing with the task of code deobfuscation, both from an academic and practical
standpoint, while showcasing the differences between them.

In Chapter 2 we delve into the study of Mixed Boolean-Arithmetic expressions (MBA)
and their application to data-flow code obfuscation, presenting some of the most impor-
tant academic results in the field so far. We also introduce several metrics to assess the
complexity of MBA expressions, as well as discussing different theoretical simplification
approaches.

Chapter 3 is devoted to introducing the field of program synthesis. In particular, we
dig into different oracle-guided inductive program synthesis approaches and their appli-
cation to code deobfuscation. We present current state-of-the-art research addressing code
deobfuscation by simplification of MBA expressions using program synthesis and discuss
the limitations of this kind of approaches.

2

Finally, in Chapter 4 we present r2syntia, a tool we have developed that integrates
Syntia, an open source prototype implementing one of the discussed program synthesis
approaches, within the reverse engineering framework radare2. We test our implementa-
tion and obtain satisfactory results, which are explained and compared against original
implementation. Then, we provide some insights on potential improvements that our in-
tegration could implement in a near future.

A guided example recreating the process of obfuscating a snippet of C code, analyzing
the obtained binary with radare2 and extracting its semantics (i.e. deobfuscating it) with
r2syntia, can be found in Appendix A. The planning and methodology followed during
the realization of this project are presented in Appendix B and Appendix C, respectively.

3

4

Chapter 1

Code obfuscation

1.1 Context

Reverse engineering is the process of analyzing a product based on its finished and dis-
tributed form. In this work, we will specifically talk about software (or code) reverse
engineering. We will sometimes refer to it simply as reversing. The purpose of reverse
engineering can deeply vary. Among others, we find:

• Describe a (proprietary) format or protocol to provide (open) implementations that
guarantee interoperability.

• Find errors in software that can lead to a non-desired behavior of the analyzed
system. This is usually known as vulnerability research. Such misbehavior can be
leveraged to the favor of the attacker/analyst by exploiting it.

• Analyze malware samples in order to create signatures and defense mechanisms to
prevent propagation.

• Bypass software protection and/or licensing mechanisms.

The motivation behind it can differ greatly as well. In this work, we will not discuss
moral considerations, but only cover technical aspects of processes that relate to reverse
engineering.

Code obfuscation is the process of transforming an input program P into a functionally
equivalent program P′ which is harder to analyze and to extract information than from
P. We define obfuscation in the context of the technical protections against Man-At-The-
End (MATE) attacks. The concept of MATE attacks represents the scenario where the
attacker/analyst has an instance of the program and completely controls the environment
where it is executed.

Thus, code obfuscation aims to complicate the process of reverse engineering, and is
mainly used in the following domains:

5

• Malware: allows malicious software to avoid automatic signature detection by an-
tivirus engines and slows down the analysis work of the reverser for further classi-
fication and detection.

• Protection of intellectual property: in commercial software, it allows to protect an
algorithm or a protocol. We can take Skype [BD06] or Dropbox [KW13] as examples.

• Digital Rights Management: protect access to software with a license check, or to
digital content.

We find different software solutions implementing obfuscation. On the one hand, we
have academic obfuscators like Tigress [Col20], or O-LLVM [Jun+15]. On the other hand,
we find many commercial software protection products (VMProtect1, Epona2, Themida3. . .)
that leverage obfuscation within the protection mechanisms that they provide.

The general idea of code obfuscation is to apply a transformation to mess (complicate)
the program’s control-flow and/or data-flow at different abstraction levels (source code,
compiled binary or an intermediate representation4) and affecting different target units
(whole program, function, basic block5 or instruction).

In the following section we present a few obfuscation techniques to illustrate different
approaches that could be used for achieving a certain degree of protection from reverse
engineering. It is by no means a complete or exhaustive listing. The interested reader can
refer to [BP17] and [CN09] for further details, more obfuscation techniques and discussion
about classification of obfuscation transformations. Also take into account that many
weak techniques that are presented alone can be combined to create a hard obfuscation
transformation.

1.2 Survey of obfuscation techniques

1.2.1 Data-flow based

Constant unfolding

We can think of constant unfolding as opposed to the compilation optimization technique
known as constant folding, which replaces computations whose results are known at com-
pile time with such results.

Think of the following C-like statement:

x = 2 ∗ 3 + 23;

1https://vmpsoft.com/
2https://quarkslab.com/epona/
3https://www.oreans.com/Themida.php
4https://en.wikipedia.org/wiki/Intermediate_representation
5https://en.wikipedia.org/wiki/Basic_block

6

https://vmpsoft.com/
https://quarkslab.com/epona/
https://www.oreans.com/Themida.php
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Basic_block

As the result of this assignment can be known at compile-time, it would be a waste to
generate assembly code that computes each operation at run-time. Thus, the compiler can
replace the assignment to

x = 29;

and generate assembly code for this folded expression instead.

Constant unfolding can be defined as the inverse process. That is, the obfuscator would
unfold a certain constant into a computation process that produces it.

A common way to deal with this kind of obfuscation is to apply the same optimiza-
tion techniques that compilers use. In this case, one could perform Reachable Definition
Analysis6 (forward data-flow analysis), which calculates the set of definitions that may
potentially reach each program point.

Dead code insertion

Dead code is code that does not have any effect on the program’s operation. Indeed, an-
other common compiler optimization technique is known as dead code elimination.

To illustrate it, consider the following C-like function:

int f() {
int x, y, z;
x = 1; // This assignment to x is dead
y = 2;
z = 3; // z is dead, as it is not used again
x = y + 4; // Any x above is not live
return x;

}

We can also discuss about code in the assembly level. Consider the following x86
assembly snippet of code:

mov eax, 1 ; This assignment to eax is dead
mov ebx, 2
mov ecx, 3 ; ecx is dead, as it is not used again
add ebx, 4
mov eax, ebx ; Any occurrence of eax above is not live

Thus, we can define dead code insertion obfuscation technique as the process of deliber-
ately inserting instructions that will not have any effect in the computations’ outcome.

In order to deal with this kind of obfuscation one could perform Liveness Analysis7

(backward data-flow analysis), which calculates the variables (in assembly, registers and
memory locations) that are live at each point in the program.

6https://en.wikipedia.org/wiki/Reaching_definition
7https://en.wikipedia.org/wiki/Live_variable_analysis

7

https://en.wikipedia.org/wiki/Reaching_definition
https://en.wikipedia.org/wiki/Live_variable_analysis

Encodings

Encodings aim at preventing a specific value to appear in clear at any point of the pro-
gram execution. They are composed of an encoding function f (x) and its corresponding
decoding function f−1(x).

Consider the encoding function f (x) = x − 0x1234, whose result f (x) is pushed on
the stack. Then, whenever the actual value x is needed, the decoding function f−1(x) =
x + 0x1234 has to be applied beforehand. This case is exemplified in the following x86
assembly snippet of code:

...
sub eax, 0x1234 ; Apply encoding function to eax
push eax ; Push eax on the stack
...
add dword [esp], 0x1234 ; Apply decoding function to value on top of stack
...
pop ebx ; Retrieve decoded value into ebx register

Affine functions are very common in obfuscation encodings, as they are easily invert-
ible and produce low performance overhead.

The main drawback on this technique is that constants have to be dynamically decoded
at run-time before being processed. Even if it is possible to use encodings homomorphic
to a certain operator (i.e., computations could be done on the encoded values), that would
decrease the diversity of possible encodings.

Pattern-based obfuscation

The basic idea is to transform one or more adjacent instructions into a new sequence of
instructions preserving the semantic behavior but being more complicated to analyze.

Consider the following x86 assembly instruction:

push eax

It could be converted to:

lea esp, [esp - 4]
mov dword [esp], eax

Now consider the first instruction from previous snippet:

lea esp, [esp - 4]

It could be converted to:

push ebx
mov ebx, esp
xchg [esp], ebx
pop esp

8

These kinds of pattern substitutions can be as complicated as desired, and can be ap-
plied iteratively an arbitrary number of times to complicate the initial code. Also note
that we have illustrated the examples with the concrete registers eax and ebx, but these
transformations would apply to any 32-bit register.

To deal with this kind of obfuscation, one can construct inverse pattern substitutions
to map the target sequences into the original ones. However, manually extracting the
necessary rewriting transformations can be very time-consuming.

1.2.2 Control-flow based

Functions Inlining and Outlining

• On the one hand, the technique of function inlining consists of replacing a call to a
function by the body of the function itself.

• On the other hand, the technique of function outlining extracts a snippet of code
into a new function that is called whenever the previous code was placed.

Both function inlining and outlining modify the Control Flow Graph8 (CFG) of partic-
ular functions, as well as the Call Graph9 (CG) of the whole program. Combining both
techniques degenerates the logic that could be extracted or inferred from the original CG
and the CFG of potentially interesting functions.

Opaque predicates

An opaque predicate is a specially crafted boolean expression P that always evaluates to
either true or false. That is, its value is known during obfuscation, but (should be) un-
known for the analyst.

The typical use of an opaque predicate is to create fake branches in the CFG of a func-
tion. The branch that will always be followed contains the intended (original) code, while
the other branch could contain junk code that will never execute.

Another variation is to consider a predicate P that randomly evaluates to true or false.
Then, each conditional branch should contain a different obfuscation transformation of
the original code preserving its semantics, creating the illusion of a differentiated behav-
ior between the branches.

A standard way to deal with opaque predicates is by using symbolic execution to
obtain the predicates and solve them with the aid of a satisfiability modulo theories10

(SMT) solver.

8https://en.wikipedia.org/wiki/Control-flow_graph
9https://en.wikipedia.org/wiki/Call_graph

10https://en.wikipedia.org/wiki/Satisfiability_modulo_theories#Solvers

9

https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Call_graph
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories#Solvers

Control flow flattening

The basic idea of control flow flattening is to change the structure of a function’s CFG
by replacing all control structures with a central and unique dispatcher, typically imple-
mented as a switch-like statement. Then, each basic block is responsible of updating the
dispatcher’s context so it can link to the next basic block. The strength (and weakness) of
this technique rests on the ability to conceal the context’s manipulations and transitions.

1.2.3 Mixed data-flow and control-flow based

VM-based obfuscation

Virtual Machine (VM) based obfuscation is a rather advanced technique, and one of the
most prominently used by state-of-the-art protection mechanisms, both in malware threats
and in commercial software protectors.

A VM consists of some bytecode in a custom Instruction Set Architecture (ISA) and
an interpreter for such architecture. At compile-time, the parts of the code that are to be
protected (obfuscated) are compiled into the VM-ISA and are inserted into the protected
program alongside its respective interpreter, whilst removing original (native) code. Each
invocation of the protected call is replaced by a call to the VM-ISA interpreter, passing the
bytecode as parameter. The interpreter will generally follow a Fetch-Decode-Execute loop
over the bytecode calling each VM instruction handler and finally update the VM context
and returning control back to native code. More advanced VM implementations can be
derived, with added features that harden the implementation and make them more re-
silient to analysis. A description of different advanced VM implementations can be found
in Chapter 5 of [Dan+14].

The design of the VM-ISA is entirely at the discretion of the protection designer, and
can be generated uniquely upon protection time. Thus, it is necessary for the analyst to
understand the interpreter in order to analyze the bytecode and, eventually translate it
back into native instructions.

Note that we can think of VM-based obfuscation as a generalization of Control flow
flattening, where both control-flow and data-flow are virtualized, while in control flow
flattening only the control-flow was virtualized.

The interested reader can refer to Rolf Rolles’ work on unpacking virtualization obfus-
cators [Rol09]. For a guided example deobfuscating the VM-based protection included in
the FinSpy Malware please refer to [Rol18a; Rol18b; Rol18c].

1.3 Assessing the quality of code obfuscation

We are interested in evaluating the quality of an obfuscation technique. This turns out to
be a complicated issue, mainly due to the fact that attacks on obfuscation are composed

10

of both human and automatic analysis, meaning that we have to take into account the
following items, which are hard to quantify:

• The contribution of reverse engineers in terms of intuition and experience.

• The analysis tools, very often proprietary and custom-made, at least to some extent.

Thus, we find several approaches to characterize the quality of obfuscation. On the one
hand, we could use classical software complexity metrics (presented in Section 1.3.1) and
derive obfuscation metrics from them (presented in Section 1.3.2). On the other hand,
we could take an approach using abstract interpretation11 to give an attack model to
obfuscation (presented in 1.3.3).

1.3.1 Complexity metrics of a program

Common software complexity metrics [CTL97] can be classified in three types:

• Number of instructions.

• Control-flow: cyclomatic complexity12 (number of linearly independent paths), nest-
ing level, knots. . .

• Data-flow: fan-in/fan-out of instructions or basic blocks, data-flow complexity (num-
ber of inter-basic block variable references). . .

1.3.2 Metrics for obfuscation

We could use the software complexity metrics described above and state that a good ob-
fuscation should increase some of them (chosen depending on the particular obfuscation
technique). Indeed, this will be the case for the potency metric described below.

Collberg et al. define in [CTL97] three metrics often used as a basis to characterize the
quality of an obfuscation technique:

• potency: Using one of the software complexity metrics described in Section 1.3.1,
a potent obfuscation transformation is a transformation that increases the chosen
complexity.

• resilience: determines the resistance of the transformation to human analysis (local,
global, inter-procedural o inter-process effort) and to automatic analysis (polynomial
or exponential time).

• cost: determines the extra resources (execution time and space) of the obfuscated
program compared to the original. The cost can be free (O(1)), cheap (O(n)), costly
(O(np)) or dear (exponential).

11https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
12https://en.wikipedia.org/wiki/Cyclomatic_complexity

11

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://en.wikipedia.org/wiki/Cyclomatic_complexity

Then the authors define the quality of an obfuscation transformation as the combina-
tion of these three metrics.

We could also consider stealth as a metric: that is, the difficulty to detect the obfusca-
tion. Collberg defines in [CN09] two types of stealth:

• Steganographic13 stealth: the analyst is unable to determine whether the obfuscation
transformation has been applied or not.

• Local stealth: the analyst is unable to determine where the obfuscation transforma-
tion has been applied.

1.3.3 Attack model from Abstract Interpretation

The metrics described before are clearly limited by the fact that do not take into account
the process of reverse engineering. For that reason, Dalla Preda et al. propose in [DG05]
a model for attacks and a definition of potency relying on the properties that a reverser
might want to infer from the analysis of the program.

This attack model is based on abstract interpretation, which is a way of approximating
the concrete semantics of a program. The basic idea is that properties that an analyst
might be interested in are encoded as elements ϕ of an abstract domain that models the
static and dynamic analyzers. Then, a transformation is said to be potent to a property ϕ

if a reverser cannot deduce this property from the obfuscated program, effectively identi-
fying the class of attacks against which the obfuscation is potent.

This does not guarantee the resilience of the obfuscation (i.e. that it cannot be undone).
Moreover, although the authors assess the resilience of opaque predicate insertions as a
case study, they do not provide a general model for resilience estimation.

This abstract model and its definition of potency are closer to real settings, as they take
the reverser interest and methods into account. However, the abstraction of the static and
dynamic analyzers raises the question of how are we supposed to know the methods and
tools used by the analyst, as reversers often possess their own private and custom toolkit,
and it is not really possible to model and assess the resistance against unknown analysis.

1.4 Fundamentals of code deobfuscation

Code deobfuscation is the process of transforming an obfuscated (piece of) program P′

into a (piece of) program P′′ that is easier to analyze than P′.

Ideally, we would like to have P′′ ≈ P, where P represents the original non-obfuscated
program code. This is rarely possible to guarantee, due to the following reasons:

13https://en.wikipedia.org/wiki/Steganography

12

https://en.wikipedia.org/wiki/Steganography

• The analyst performing the deobfuscation process almost never has access to original
code to check against.

• The analyst is usually not interested in the whole program, but rather some specific
parts of it.

• The analyst might be interested in understanding the program operation, or some
particular part of its code, rather than reconstructing a functional non-obfuscated
binary.

The analyst has several tools available in order to deal with obfuscated code. Besides
general reverse engineering frameworks with interactive disassemblers like radare214 (or
its GUI Cutter15), Ghidra16 or IDA Pro17, more specific tools that provide dynamic binary
instrumentation capabilities (Frida18), advanced binary analysis and (dynamic) symbolic
execution (Triton19, Miasm20, Metasm21) are usually very helpful and even necessary for
some kinds of analysis.

We quote below brief literal excerpts from [Dan+14] that accurately describe some cru-
cial aspects to reflect on when we discuss about code deobfuscation tools and techniques.

Static analysis vs Dynamic analysis

“Static analysis is the discipline of automatically inferring information about computer
programs without running them. Static analysis tries to derive properties (invariants) that
hold for all executions of the program, through a conservative over-approximation of its
concrete semantics.

. . . Dynamic analysis is the discipline of automatically inferring information about a
running computer program. Dynamic analysis derives properties that hold for one or
more executions of a program, through a precise under-approximation.”

Symbolic and concolic execution

“A common method of dynamic analysis is dynamic testing, which executes a program
with several inputs and checks the program’s response. Generally, test cases explore only
a subset of the possible executions of the program.

In order to enlarge the coverage of dynamic testing, the principle of symbolic execution
uses symbolic values rather than concrete inputs. At any point during symbolic execu-
tion, a symbolic state of the program is updated. This symbolic state consists of a symbolic

14https://rada.re
15https://cutter.re
16https://ghidra-sre.org/
17https://www.hex-rays.com/products/ida/
18https:/frida.re
19https://triton.quarkslab.com/
20https://miasm.re/
21https://github.com/jjyg/metasm

13

https://rada.re
https://cutter.re
https://ghidra-sre.org/
https://www.hex-rays.com/products/ida/
https:/frida.re
https://triton.quarkslab.com/
https://miasm.re/
https://github.com/jjyg/metasm

store and a path constraint. The symbolic store contains the symbolic values, and the path
constraint is a formula that records the history of all conditional branches taken until the
current instruction.

At a given instruction of the program, you can use a constraint solver (SMT or SAT
solver) to determine the corresponding path constraint. A satisfying assignment provides
concrete inputs with which the program reaches the program instruction. By generating
new tests and exploring new paths, you can increase the coverage of dynamic testing.

Unfortunately, constraints generated during symbolic execution may be too complex
for the constraint solver. If the constraint solver is unable to compute a satisfying assign-
ment, you cannot determine whether a path is feasible or not.

Concolic execution provides a solution to this problem in many situations. The idea is
to perform both symbolic execution and concrete execution of a program. When the path
constraint is too complex for the constraint solver, you can use the concrete information to
simplify the constraint (typically by replacing some of the symbolic values with concrete
values). You can then expect to find a satisfying assignment of this simplified constraint.”

Soundness and Completeness

“You can formulate any program analysis problem as a verification that the program
satisfies a property. Two fundamental concepts can be used to characterize an analysis
algorithm: its soundness and its completeness.

. . . Given a property, a sound program analysis identifies all violations of the property.
However, because it over-approximates the behaviors of the program, it may also report
violations of the property that cannot occur.

. . . A sound symbolic execution guarantees that because a symbolic constraint path is
satisfiable, there must be a concrete execution path that reaches the corresponding con-
crete state (even if some reachable concrete state does not have a corresponding symbolic
state).

. . . The soundness of an abstract interpreter is relative to which questions it can answer
correctly, despite the loss of information.

. . . Given a property, a complete analysis algorithm reports a violation of the prop-
erty only if there is a concrete violation of the property. However, because it under-
approximates the behaviors of the program, some concrete violations of the property may
not be reported.

. . . A complete symbolic execution covers all concrete transitions. It guarantees that if
a concrete execution state is reachable, then there must be a corresponding symbolic state.

14

. . . Both soundness and completeness can be defined for static and dynamic analyses,
which are good candidates to represent the actions conducted by reversers when they try
to simplify the representation of an obfuscated program.”

Remark 1.1. We will not go deep into any particular deobfuscation procedure, as different
techniques are usually very specific to the type of obfuscation we deal with. The interested
reader can refer to Chapter 5 of [Dan+14] for more information, a detailed treatment of
the aspects addressed above and a discussion of different tools with guided examples.
Part III (chapters 9 to 13) of [And18] also provides a good treatment of some advanced
binary analysis techniques that can be used for deobfuscation, with guided examples as
well. Another good resource with hands-on exercises can be found in [Lab20].

1.5 Discussion: academic vs practical code deobfuscation

The nature of code deobfuscation is different from formal verification22 or program anal-
ysis23, even if we prefer to use techniques developed in those contexts.

As stated before, whereas an obfuscator transforms a program P into an obfuscated
P′, in code deobfuscation we do not necessarily need to transform back the obfuscated P′

into a deobfuscated (or at least simpler) form, but instead we usually only seek enough
information of P to answer certain questions related to our current reverse engineering
effort. Thus, even if we might “dislike” using unsound methods, we still prefer to obtain
tangible results by the end of the day, so we may employ such methods.

For example, consider a pattern-based obfuscator that contains erroneous pattern sub-
stitutions, i.e. not preserving semantic equivalence (e.g. think of a substitution where the
side effects on CPU flags are not preserved). Suppose that an analyst dealing with such
an obfuscation is aware of the errors and is able to correct them at deobfuscation time.
This means that the deobfuscator would be “incorrect”, as it will not preserve the seman-
tic equivalence of the transformation. However, it will actually produce “correct” results
with respect to the pre-obfuscated code. Then, should the deobfuscating substitution be
applied?

From a strictly academic/formal standpoint, the answer would probably be no. How-
ever, from a reverse engineering/practical standpoint we would say yes.

22https://en.wikipedia.org/wiki/Formal_verification
23https://en.wikipedia.org/wiki/Program_analysis

15

https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Program_analysis

16

Chapter 2

Mixed Boolean-Arithmetic
expressions

2.1 Fundamentals

The concept of Mixed Boolean-Arithmetic (MBA) expressions initially appeared in the
context of code obfuscation, in the work by Zhou et al. [Zho+07]. Expressions mixing
arithmetic and bitwise operators are already in use in different areas, such as in cryptog-
raphy, even if they are not given a name (see Section 2.2.4).

Research literature in the specific field of MBA expressions is very scarce. Since the
work of [Zho+07], the few publications explicitly related to MBA expressions have been
mainly focused on assessing the strength or resilience of the obfuscation techniques intro-
duced by Zhou et al. To our knowledge, there is no other published work addressing
the formalization of MBA expressions than Eyrolles’ PhD thesis [Eyr17]. Hence, it will be
extensively cited in this chapter.

2.1.1 Polynomial MBA expressions

In order to capture the different computations that occur in any modern microprocessor,
Zhou et al. propose the following algebraic system.

Definition 2.1 ([Zho+07]). With n a positive integer and B = {0, 1}, the algebraic system
(Bn,∧,∨,⊕,¬,≤,≥,>,<,≤s,≥s,>s,<s, 6=,=,�,�s,�,+,−, ·), where�,� denote left and
right shifts, · denotes multiply, and signed compares and arithmetic right shift are indicated by s,
is a Boolean-arithmetic algebra (BA-algebra), BA[n]. n is the dimension of the algebra.

Nevertheless, we chose to follow the same approach as in [Eyr17], by deliberately ex-
cluding from our study the subject of MBA inequalities present in the former definition.
This is because we are interested in deobfuscating (simplifying) MBA expressions, while
an inequality is an assertion that returns a true or false value, which changes the issue to
handle. In terms of notation, this essentially means that we will be somewhat more flexible

17

in our definition of MBA expressions. As in [Eyr17], we chose to define MBA expressions
by explicitly describing the different building blocks that compose them and how they are
bundled together, but we will not strictly define them as a function f : (Bn)t → Bn linked
to the definition of a BA-algebra, as is the case of [Zho+07].

In spite of that, it is important to remark that we will work on n-bit words considered
at the same time as elements of different mathematical structures. For example, standard
arithmetic operations are considered in (Z/2nZ,+,×) while bitwise operations belong to
({0, 1}n,∧,∨,¬) or ({0, 1}n,∧,⊕).

Remark 2.2. We will use interchangeably the terms of boolean and bitwise operators.

Definition 2.3 (Polynomial MBA expression). An expression E of the form

E = ∑
i∈I

ai

(
∏
j∈Ji

ei,j(x1, . . . , xt)

)
(2.1)

where the arithmetic sum and product are modulo 2n, ai are constants in Z/2nZ, ei,j are bitwise
expressions of variables x1, . . . , xt in {0, 1}n, I ⊂ Z and for all i ∈ I, Ji ⊂ Z are finite index sets,
is a polynomial Mixed Boolean-Arithmetic (MBA) expression.

Definition 2.4 (Linear MBA expression). A polynomial MBA expression of the form

E = ∑
i∈I

aiei(x1, . . . , xt)

is called a linear MBA expression.

Example 2.5. [Zho+07] The expression E written as

E = 8458(x ∨ y ∧ z)3((xy) ∧ x ∨ t) + x + 9(x ∨ y)yz3

is a non-linear polynomial MBA expression.

Example 2.6. [Eyr17] The expression E written as

E = (x⊕ y) + 2× (x ∧ y) (2.2)

is a linear MBA expression, which simplifies to E = x + y.

The MBA-obfuscated expressions that are of our interest rely on composing layers of
MBA rewritings. Therefore, the following statement from [Zho+07] is essential to our
study.

Proposition 2.7. Consider the composition of polynomial MBA expressions by treating each of
x1, . . . , xt as a polynomial MBA expression of other variables itself. Then, this composition is still
a polynomial MBA expression.

This fact guarantees that we will always be working with polynomial MBA expres-
sions. Unless stated otherwise, when we refer to an MBA expression E we are denoting a
polynomial MBA expression.

18

2.2 Obfuscation with MBA expressions

2.2.1 Obfuscation of expressions

This technique was presented in [Zho+07] and in several patents with intersecting authors,
like [JXY08].

Given an MBA expression E1, we are interested in generating an equivalent expression
E2 which is more complex (see Section 2.3) than the initial expression E1. The main idea
is to obfuscate one or several operators from E1. The process relies on two differentiated
components:

MBA rewriting

A chosen operator is rewritten with an equivalent MBA expression. A list of rewriting
rules is given in Appendix A of [Eyr17]. Other MBA equalities can be found in [War12]
referred as bit hacks.

Example 2.8.

x + y→ (x⊕ y) + 2× (x ∧ y) (2.3)

Insertion of identities

Let e be any subexpression of the target expression being obfuscated. Then, we can write
e as f−1(f (e)) with f being any invertible function on Z/2nZ. The function f is often an
affine function, as presented in [Zho+07].

Example 2.9. Let E1 = x + y on Z/28Z. Consider the following functions f and f−1 on
Z/28Z:

f : x 7→ 39x + 23

f−1 : x 7→ 151x + 111

Consider now the expression e1 obtained by applying the rewriting rule (2.3) to E1:

e1 = (x⊕ y) + 2× (x ∧ y)

Then apply the insertion of identities produced by f and f−1:

e2 = f (e1) = 39× e1 + 23

E2 = f−1(e2) = 151× e2 + 111

Finally, expand E2 to observe the final obfuscated expression derived from E1 = x + y:

E2 = 151× (39× ((x⊕ y) + 2× (x ∧ y)) + 23) + 111

19

2.2.2 Opaque constant

This technique allows to hide a target constant K (e.g. a secret key used in a decryption
routine). It uses permutation polynomials1, which were characterized by Rivest in [Riv01].
However, no inversion algorithm was provided then. Later, Zhou et al. provide a subset of
such polynomials of degree m noted Pm(Z/2nZ), as well as a formula to find the inverse
of such polynomials. A study of the formal characterization of such polynomials is out of
scope of this work (see [Zho+07]).

The method to construct the opaque constant (i.e. the constant obfuscation) is given
by the following proposition.

Proposition 2.10. Let

• K ∈ Z/2nZ be the target constant to hide,

• P ∈ Pm(Z/2nZ) and Q its inverse: P(Q(X)) = X, ∀X ∈ Z/2nZ,

• E be an MBA expression of variables (x1, . . . , xt) ∈ (Z/2nZ)t non-trivially equal to zero.

Then, the constant K can be replaced by P(E + Q(K)) for any values taken by (x1, . . . , xt).

Proof. By construction, we have:

P(E + Q(K)) = P(Q(K)) = K

regardless of the input variables (x1, . . . , xt), as the expression E vanishes.

Remark 2.11. Such an expression E can be easily obtained from a given MBA rewriting
rule by subtracting the one side from the other of the equivalence rule. For example, from
rule (2.3) we can generate the non-trivially zero expression:

E = x + y− (x⊕ y)− 2× (x ∧ y)

With the opaque constant technique we obtain a function that computes K for all its
input variables. Those variables can be chosen randomly every time the program requires
the key K to perform any computation.

Algebraic weakness of the opaque constant technique

Lemma 2.12 ([Eyr17]). Let

• P(X) = a0 + a1X + a2X2 + · · ·+ adXd be a polynomial of degree d,

• Q be a polynomial of degree d, such that (P(Q(X)) = X, ∀X ∈ Z/2nZ,

1https://en.wikipedia.org/wiki/Permutation_polynomial

20

https://en.wikipedia.org/wiki/Permutation_polynomial

• E = ∑i∈I ai
(

∏j∈Ji
ei,j(x1, . . . , xt)

)
be an MBA expression of variables (x1, . . . , xt) ∈

(Z/2nZ)t non-trivially equal to zero, with no ei,j such that ei,j(x1, . . . , xt) = 1 whatever the
values of (x1, . . . , xt). This condition enforces that the sum composing the MBA expression
does not contain any constant.

Then, the constant monomial of P(E + Q(K)) is equal to K.

Proof.

P(E + Q(K)) = a0 + a1(E + Q(K)) + · · ·+ ad(E + Q(K))d

= a0 + a1Q(K) + a2Q(K)2 + · · ·+ adQ(K)d + ϕ(E)

with ϕ(E) = ∑d
k=1 ak

(
∑k−1

i=0 Ek−iQ(K)i), a polynomial in variables x1, . . . , xt with no con-
stant monomial, as every monomial of ϕ(E) is multiplied by a positive power of E. This
means that the constant part of P(E + Q(K)) is:

a0 + a1Q(K) + a2Q(K)2 + · · ·+ adQ(K)d = P(Q(K)) = K

This lemma reveals that depending on the form of the null MBA expression used for
obfuscation, the expanded form of the opaque constant might display clearly the constant
intended to be concealed. In particular, this will happen when the chosen null MBA ex-
pression does not contain a constant part.

A detailed assessment of the resilience of the opaque constant technique was presented
by Biondi et al. in [Bio+17].

2.2.3 Generating new linear MBA equalities

Theorem 2.13 ([Zho+07; Eyr17]). With n the number of bits, s the number of bitwise expressions
and t the number of variables, all positive integers, let:

• (X1, . . . , Xk, . . . , Xt) ∈ {{0, 1}n}t be vectors of variables on n bits.,

• e0, . . . , ej, . . . , es−1 be bitwise expressions,

• e = ∑s−1
j=0 ajej be a linear MBA expression, with aj integers,

• ej(X1, . . . , Xt) =

 f j(X1,0, . . . , Xt,0)
...

f j(X1,n−1, . . . , Xt,n−1)

 with Xk,i the i-th bit of Xk and

f j : {0, 1}t → {0, 1} 0 ≤ j ≤ s− 1

u 7→ f j(u)

21

• F =

 f0(0) . . . fs−1(0)
...

...
f0(2t − 1) . . . fs−1(2t − 1)

 the 2t × s matrix of all possible values of f j for any

i-th bit.

If F ·V = 0 has a non-trivial solution, with V = (a0, . . . , as−1)
T , then e = 0.

Proof. Let F ·V = 0, with V = (a0, . . . , as−1)
T . If we explicit F ·V, we get:

F ·V =

 f0(0) . . . fs−1(0)
...

...
f0(2t − 1) . . . fs−1(2t − 1)

 ·
 a0

...
as−1

 =

s−1
∑

j=0
aj · f j(0)

...
s−1
∑

j=0
aj · f j(2t − 1)

 ,

meaning that F ·V = 0⇔
s−1
∑

j=0
aj · f j(l) = 0 for every l ∈ {0, . . . , 2t − 1}.

This is equivalent to having
s−1
∑

j=0
aj · f j(X1,i, . . . , Xt,i) = 0 for every i, whatever the values of

the Xk,i.
On the other hand, we can write e as:

s−1

∑
j=0

aj · ej(X1, . . . , Xt) =
s−1

∑
j=0

aj ·

 f j(X1,0, . . . , Xt,0)
...

f j(X1,n−1, . . . , Xt,n−1)

=

s−1

∑
j=0

aj ·
n−1

∑
i=0

f j(X1,i, . . . , Xt,i) · 2i

=
s−1

∑
j=0

(n−1

∑
i=0

aj · f j(X1,i, . . . , Xt,i) · 2i
)

=
n−1

∑
i=0

2i
(s−1

∑
j=0

aj · f j(X1,i, . . . , Xt,i)
)

.

If F ·V = 0, then
s−1
∑

j=0
aj · f j(X1,i, . . . , Xt,i) = 0 for every i, thus

n−1

∑
i=0

2i
(s−1

∑
j=0

aj · f j(X1,i, . . . , Xt,i)
)
= 0 ∀i, 0 ≤ i ≤ n− 1,

meaning that e = 0.

This theorem provides a method to create new linear MBA equalities. The method is
based on the following corollary.

22

Corollary 2.14. Given a {0, 1}-matrix of size 2t × s with linearly dependent column vectors,
one can generate a non-trivially equal to zero linear MBA expression of t variables as a linear
combination of s bitwise expressions.

Example 2.15. Let

F =

0 0 0 1 1
0 1 1 0 1
1 0 1 1 1
1 1 0 1 1

with column-vectors truth-tables for:

f0(x, y) = x

f1(x, y) = y

f2(x, y) = (x⊕ y)

f3(x, y) = (x ∨ (¬y))

f4(x, y) = −1

Now, the vector V, solution to F ·V = 0 is:

V = (1,−1,−1,−2, 2)T

This yields the following linear MBA equation:

x− y− (x⊕ y)− 2(x ∨ (¬y))− 2 = 0

Finally, we can derive many equalities from this equation and use them to form MBA
rewriting rules:

x− y→ (x⊕ y) + 2(x ∨ (¬y)) + 2

(x⊕ y)→ x− y− 2(x ∨ (¬y))− 2

2.2.4 Obfuscation vs Cryptography

A mixing of bitwise and arithmetic operators was already used in the context of cryptog-
raphy (before being given a name) to design symmetric primitives, with the stated goal
of getting efficient, non-linear and complex interactions between operations. However,
there is a key difference between what is looked for in cryptography and in obfuscation,
as stated in [Eyr17]:

• In cryptography, the MBA expression is the direct result of the algorithm description,
and the resulting cryptosystem has to verify a set of properties (e.g. non-linearity,
high algebraic degree) from a black-box point of view. The complex form of writing
is directly related to some kind of hopefully intrinsic computational complexity for
the resulting function: one wants the inverse computation to be difficult to deduce
without knowing the key.

23

• In obfuscation, an MBA is the result of rewriting iterations from a simpler expres-
sion which can have very simple black-box characteristics. There is no direct relation
between the complex form of the expression and any intrinsic computational com-
plexity of the resulting function: on the contrary, when obfuscating simple functions,
one knows that the complex form of writing is related to a simpler computational
function. Nevertheless, getting the result of the computation for the obfuscated
expression requires indeed to get through all the operators in the considered expres-
sion which implies somehow a computational complexity.

To sum up, we could say that in cryptography, the intention is to gain intrinsic compu-
tational complexity, while in obfuscation, one seeks a complexity linked to the form of
writing that would prevent simplification.

2.3 Complexity

2.3.1 Incompatibility of operators

The mixing of arithmetic and bitwise operators do not interact very well, as there are
no general rules (e.g. distributivity, associativity. . .) to cope with them. Although we
find some particular cases where rules analogous to distribution apply, they cannot be
generalized.

Example 2.16. We have that the following equality holds for all input values:

∀x, y ∈ Z/2nZ : 2× (x ∧ y) = (2x ∧ 2y) (2.4)

but this distribution rule does not generalize:

∃x, y ∈ Z/2nZ : 3× (x ∧ y) 6= (3x ∧ 3y) (2.5)

The equality from expression (2.4) is due to the fact that multiplication by 2n can be seen
as a left shift on n bits, which is a bitwise operator.

As motivated by 2.2.4, cryptography can provide us with an example study of what
means incompatibility between operators and how it can prevent an easy study of MBA
expressions in a unified domain.

A classic example is the IDEA block cipher [LM91]. Its construction relied in three key
components, carefully interleaved to prevent easy manipulation of the resulting expres-
sions:

• multiplication � in (Z/(216 + 1)/Z)∗

• addition � in Z/216Z

• bitwise XOR ⊕ in F16
2 (where F2 is the finite field of two elements as described in

Section 2.4.2).

24

Among the reasons why those three operations are incompatible, we find that:

• No pair of three operations satisfies a distributive law.

• No pair of three operations satisfies a generalized associative law.

The incompatibility study of former operators was at the basis of the argument on the
confusion2 property of the block cipher.

Further details and more reasons for this incompatibility of operators in IDEA block
cipher can be found in [LM91].

2.3.2 DAG representation

We want to obtain a tree-like representation for MBA expressions. A common representa-
tion would be in the form of an Abstract Syntax Tree (AST)3. However, we are interested
in avoiding multiple occurrences of the same subexpression. Because of that, a Directed
Acyclic Graph (DAG)4 representation is chosen, as it identifies common subexpressions
of a given expression.

Definition 2.17 (DAG representation [Eyr17]). The DAG representation of an MBA expression
is an acyclic graph G where:

• there is only one root node,

• leaves represent constant numbers or variables,

• intermediate nodes represent arithmetic or bitwise operators,

• an edge from a node v to a node v’ means that v’ is an operand of v,

• common expressions are shared, which means that they only appear once in the graph.

An example of a DAG representation of an MBA expression can be seen in Figure 2.1.

2.3.3 Metrics

Based on the DAG representation, Eyrolles proposes three different metrics in [Eyr17]
intended to characterize the complexity of MBA expressions.

Remark 2.18. The metrics presented are not particularly meant to characterize the re-
silience of the MBA obfuscation techniques described before (MBA rewriting and opaque
constant), but the complexity of an MBA expression in general. Nevertheless, the com-
plexity of the MBA expressions generated by an obfuscation technique can indeed be a
factor used to evaluate the resilience of said technique. Details in this topic can be found
in Chapter 5 of [Eyr17].

2https://en.wikipedia.org/wiki/Confusion_and_diffusion
3https://en.wikipedia.org/wiki/Abstract_syntax_tree
4https://en.wikipedia.org/wiki/Directed_acyclic_graph

25

https://en.wikipedia.org/wiki/Confusion_and_diffusion
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Directed_acyclic_graph

+

×

∧

x y 2

Figure 2.1: DAG representation of MBA expression: 2× (x ∧ y) + (x ∧ y)

Number of Nodes

Definition 2.19. Let E be an MBA expression. We define the size of E as its number of nodes in
DAG representation, i.e. operators, variables and constants.

As we consider that every occurrence of any subexpression can be simplified in the
same way, the sharing property of DAG representation presents a great advantage, as
each occurrence of such a subexpression is only taken into account once. This means that
simplifying an occurrence of a subexpression is equivalent to simplifying all its occur-
rences.

Decreasing the number of nodes makes the expression easier to apprehend and manip-
ulate. It might be useful for a potential brute-force simplification approach, as it decreases
the size of the input set.

MBA Alternation

We are interested in quantifying the “mixed aspect” of an MBA expression with. Thus,
a purely arithmetic or purely boolean expression should have a null MBA alternation. To
define the MBA alternation of an expression, we first need to define the type of an operator
op. Eyrolles proposes that the type is arithmetic if op ∈ {+,−,×} and boolean (or bitwise)
if op ∈ {∧,∨,⊕,¬}.

Definition 2.20 (MBA alternation). For a graph G = (V, E) (being the DAG representation
of an MBA expression), with V the set of vertices and E the set of edges, the MBA alternation
altMBA(G) is:

altMBA(G) = |{(v1, v2) : type(v1) 6= type(v2)}|

26

where (v1, v2) ∈ E represents the edge linking the two vertices v1, v2 ∈ V

These edges represent potentially difficult points in the MBA expression to be simpli-
fied.

Average Bit-vector size

We add to the DAG representation a property that we call the bit-vector size.

Definition 2.21 (Bit-vector size). For a node v, the bit-vector size bvsize(v) is:

• If v is a leaf node, the bit size of the variable or constant it represents. This size can be
deduced from the context (e.g. size of the input of a function), or by additional indications
(e.g. binary masks). The size of a constant may also be inferred from the actual number of
bits of that constant (possibly rounded to the next power of two).

• If v represents an operator, the bit size of the output of the operation. This depends on the
nature of the operator:

– if v represents a binary operator in {+,−,×,⊕,∨} with v1, v2 as operands, then:
bvsize(v) = max(bvsize(v1), bvsize(v2))

– if v represents a boolean AND (∧) with v1, v2 as operands, then:
bvsize(v) = min(bvsize(v1), bvsize(v2))

– if v represents a unary operator in {¬,−} with v1 as operand, then:
bvsize(v) = bvsize(v1)

To illustrate the definition, observe the DAG example of the expression (x + 25863)∧ y
in Figure 2.2, assuming the variable x is on 32 bits, the variable y is on 8 bits and the
constant 25863 is on 16 bits.

This definition of the bit-vector size just accounts for the “default” size inferred from
initial analysis of the program. However, it is certainly possible to apply some trans-
formations that reduce the bit-vector size of specific nodes in some cases. The most
common reduction occurs when an operator AND (∧) has operands op1, op2 of differ-
ent bit-vector size, say bvsize(op1) < bvsize(op2). In that case, the bit-vector size of the
AND is bvsize(op1), as the definition claims, but if op2 ∈ {+,−,×,∧,∨,⊕,¬}, then we
can reduce the bit-vector size of all terms in op2 to bvsize(op1).

The restriction of operators in op2 guarantees that there will be no dependencies on
the most significant bits in the computation of the least significant bits. This reduction
process is illustrated in Figure 2.3, where the expression (x + 25863) ∧ y as represented
in Figure 2.2 has been reduced to (x + 7) ∧ y. Observe that the constant 25863 has been
reduced to 7, as it satisfies 25863 ≡ 7 mod 8.

We can use average bit-vector size as a metric accounting for both local and global re-
ductions of the bit-vector size. Note that if we only consider bit-vector size of the root

27

∧8

+32

y8 2586316 x32

Figure 2.2: DAG with bit-vector size: (x + 25863) ∧ y

∧8

+8

y8 78 x8

Figure 2.3: DAG with reduced bit-vector size: (x + 25863) ∧ y→ (x + 7) ∧ y

28

node, we would miss any simplification of a subgraph (subexpression).

Decreasing the bit-vector size of certain nodes might be beneficial in different ways:

• Allow easier recognition of rewrite rules used for obfuscation.

• Reduce complexity of simplification approaches that use bit-blasting (Section 2.4.2).

2.4 Simplification

2.4.1 Context

The main reason why MBA expressions are used in the field of code obfuscation is be-
cause there is a lack of not only theoretical background, as we have seen, but also practical
tools to deal with them. As stated in [Eyr15], on the side of computer algebra software
(Maple5, Sage6. . .), if arithmetic expressions (namely, polynomials) are featured, bitwise
operators are often not supported with symbolic variables, meaning the simple manip-
ulation of MBA is not even possible. On the other hand, SMT solvers such as Z37 or
Boolector8 offer an implementation of the bit-vector logic, but it is not their role to focus
on simplification: they rather aim at proving SAT.

Before continuing, the first thing to address is the question of what does it even mean
to simplify (or deobfuscate) an MBA expression. Considering the general literature on
expression simplification, we usually find two different approaches:

• On the one hand: computing a unique representation for equivalent objects. That is,
finding a canonical representation. This is the most studied simplification technique
in literature, both for pure arithmetic expressions and for pure boolean expressions
(normal forms). However, depending on the definition of simplicity (whether it is
cheaper to store, easier to read, more efficient to compute. . .) a canonical form may
not always be considered the simplest form. Consider for example the pure arith-
metic expression (1 + x)100. We have that its canonical form as an expanded poly-
nomial 1 + 100x + 4950x2 + · · ·+ 4950x98 + 100x99 + x100 is clearly more confusing
for a human than the factorized form. Even in terms of internal representation, a
machine would probably prefer storing the factorized form.

• On the other hand: finding an equivalent, but simpler form. Here, the meaning of
“simpler” depends on the context. As obfuscation is designed to counter both hu-
man and automatic analysis, the definition of what is a simple program and/or ex-
pression is thus double: for a human, the readability would probably be of concern,
while for a machine, the questions of performance (in terms of memory or comput-
ing time) would probably be of importance. Because obfuscation aims mainly at

5https://www.maplesoft.com/
6https://www.sagemath.org/
7https://github.com/Z3Prover/z3
8https://boolector.github.io/

29

https://www.maplesoft.com/
https://www.sagemath.org/
https://github.com/Z3Prover/z3
https://boolector.github.io/

preventing the analyst to get information, we usually focus on the readability (or the
understandability) of the program.

Generally speaking, we are interested in decreasing the value of complexity metrics pre-
sented in 2.3.3. Nevertheless, it is important to note that the definition of a simple ex-
pression could also be conditioned by the simplification approach chosen. This effectively
means that different complexity metrics could be relevant and bring difficulty to the sim-
plification process depending on the strategy followed.

Two different approaches will be discussed in following sections 2.4.2 and 2.4.3. The
former treats MBA expressions on a bit level, while the latter treats them on a word level.

Remark 2.22. Note that we will be discussing the following simplification techniques as-
suming a clean context, where MBA-obfuscated expressions are generated and simplified
directly from the source code. In a reverse engineering context, the analyzed MBA would
be in their assembly form, and we would need to translate from assembly to a high-level
representation of the expression. This is not a trivial task, and usually requires the aid of
a symbolic execution engine running on the assembly level.

2.4.2 Bit-blasting approach

This approach was presented in [GEV16]. The idea is that MBA expressions can be ex-
pressed as boolean expressions by computing the effect of every operation on each bit of
the resulting value. Thus, the goal is to get a symbolic and canonical representation of
MBA expressions at the bit-level.

The unicity of the representation is guaranteed by using a canonical representation.
In particular, the algebraic normal form (ANF) is chosen, which means that expressions
obtained will only contain XOR (⊕) and AND (∧) operators. The motivation of this
choice is due to the fact that we can take advantage of the underlying algebraic structure,
which involves the finite field with 2 elements:

F2 = ({0, 1},⊕,∧)

Then, any n-bit boolean expression can be expressed in the following form:

⊕
u∈Fn

2

cu

n−1∧
i=0

xui
i

where cu ∈ F2, xui
i = xi if ui = 1 and xui

i = 1 if ui = 0.

The ANF of a boolean expression can be naturally extended to a vectorial boolean ex-
pression. Thus, any vectorial boolean function from Fn

2 into Fm
2 can be expressed canoni-

cally. Indeed, each coordinate of the vectorial expression is a boolean expression.

Remark 2.23. At the bit level, a variable x ∈ Z/2nZ is represented with a symbolic vector
in Fn

2 , where x0 is the Least Significant Bit (LSB) of x and xn−1 its Most Significant Bit
(MSB),

30

Example 2.24. The application defined by F(x) = (x ⊕ 14) ∧ 7 from F4
2 into F4

2 is repre-
sented by:

x0
x1
x2
x3

 7→

(x0 ⊕ 0) ∧ 1
(x1 ⊕ 1) ∧ 1
(x2 ⊕ 1) ∧ 1
(x3 ⊕ 1) ∧ 0

 =

x0

x1 ⊕ 1
x2 ⊕ 1

0

Example 2.25. The application defined by F(x, y) = x ∨ y from F4

2 × F4
2
∼= F8

2 into F4
2 is

represented by:

x0
x1
x2
x3
y0
y1
y2
y3

7→

(x0 ∧ y0)⊕ x0 ⊕ y0
(x1 ∧ y1)⊕ x1 ⊕ y1
(x2 ∧ y2)⊕ x2 ⊕ y2
(x3 ∧ y3)⊕ x3 ⊕ y3

Note that the we are expressing the OR (∨) operator in ANF 9.

As stated before, the main goal is to represent, with a bit-per-bit symbolic and canoni-
cal form, a given MBA expression like:

F(X, Y, Z) = (((X⊕ (Y− 58))× Z) ∨ 31)

To do so, we need to be able to get the ANF of word-level (vectorial) boolean and
arithmetic operations. Boolean operations turn out to be fairly easy due to the ANF rep-
resentation we chose, while arithmetic ones are somewhat more involved. Besides, we are
also interested in the inverse process of canonicalization, i.e. identifying different opera-
tions from a given ANF representation of an MBA expression.

The big strength of the bit-blasting approach is to transform the problem of MBA sim-
plification into boolean expression simplification, while the main drawback is that the
canonicalization can be very expensive (in memory and time) especially when arithmetic
operators are involved. Another issue is that identification from boolean expressions to
word-level expressions is not trivial. Moreover, simplification using bit-blasting can be
quite efficient on expressions with low number of bits (e.g. 8 bits), but struggles to scale
for expressions with larger number of bits.

Further information on this technique, including canonicalization and identification
details for different boolean and arithmetic operators, as well as a software implementa-
tion10 can be found in [GEV16] and in Section 4.2 of [Eyr17].

9https://www.wolframalpha.com/input/?i=simplify+%28a+and+b%29+xor+a+xor+b
10https://github.com/quarkslab/arybo

31

https://www.wolframalpha.com/input/?i=simplify+%28a+and+b%29+xor+a+xor+b
https://github.com/quarkslab/arybo

2.4.3 Symbolic approach

This approach was presented in [EGV16] and is based on the following:

• On the one hand, using existing simplification techniques on parts of the MBA ex-
pression that may contain only one type of operator.

• On the other hand, a term rewriting approach is used to create the missing link
between subexpressions alternating different types of operators.

This approach is motivated by the fact that MBA obfuscation is mainly achieved by
using a set of rewriting rules, as introduced and described in [Zho+07]. The idea is that
rewrite rules for deobfuscation can be obtained by inverting the direction of rewrite rules
used for obfuscation. For example, the rewrite rule 2.3 can be inverted into a potential
deobfuscation rewriting rule:

x + y→ (x⊕ y) + 2× (x ∧ y)

(x⊕ y) + 2× (x ∧ y)→ x + y

As we can see, rewriting rules used for obfuscating purposes increase both the number of
nodes and the MBA alternance of the expression, while the ones devoted to deobfuscation
will decrease those complexity metrics. A set of rewriting rules can be found in Appendix
A of [Eyr17].

Because the algorithm using symbolic simplification works at the word-level, the sim-
plification is not impeded by an increasing number of bits. The representation of the
expressions is also far smaller than the representation in the bit-blasting approach. How-
ever, this simplification approach is very sensible to the size of the obfuscated expression,
in terms of number of nodes. Another drawback of this approach is that it is highly depen-
dent on the chosen set of rewrite rules. Indeed, if only one obfuscation rule is unknown,
the simplification algorithm will not be able to reduce the expression as much as it would
with knowledge of that rule.

Further details on this technique, including a software implementation11 can be found
in [EGV16] and in Section 4.3 of [Eyr17].

11https://github.com/quarkslab/sspam

32

https://github.com/quarkslab/sspam

Chapter 3

Program synthesis for code
deobfuscation

3.1 Context

State-of-the-art code deobfuscation techniques rely on symbolic execution, taint analysis
and a combination of them. Symbolic execution is a technique that lets the analyst trans-
form the control-flow and data-flow of the program into symbolic expressions. Taint anal-
ysis is a technique that lets the analyst know at each program point what part of memory
or registers are controllable by the user input. These techniques have been shown to be
promising to address control-flow based obfuscation, in which we need to check the satis-
fiability of the obtained symbolic boolean condition. However, when addressing the task
of data-flow deobfuscation (for example, MBA simplification or VM instruction handlers
behavior extraction from VM-based obfuscation) we are interested in finding a simpler
expression that is semantically equivalent to the extracted symbolic expression, rather
than checking for its satisfiability. We find that raw simplification techniques are heavily
dependent on the syntactic complexity of the code being analyzed. Thus, an adversary
might thwart the analysis capabilities by arbitrarily increasing the syntactic complexity of
the obfuscated code introducing either artificial complexity (e.g. junk code) or algebraic
complexity (e.g. MBA rewritings).

In order to overcome the scalability issues that arise from increased syntactic complex-
ity and, specifically, to be able to address data-flow based code deobfuscation more effec-
tively, we would like to reason about the semantics of the code instead of syntax. In this
sense, there has been some recent work towards introducing program synthesis techniques
aiming to synthesize the semantics of a particular snippet of code, presumably obfuscated.
By reasoning about code semantics, we are no longer limited by the syntactic complexity
of the underlying code, which can be arbitrarily increased, but only by its semantic com-
plexity.

33

3.2 Fundamentals of program synthesis

3.2.1 Introduction

Program synthesis is the process of automatically constructing programs that satisfy a given
specification. By specification, we mean to find a way of somehow “telling the computer
what to do” and let the implementation details to be carried by the synthesizer.

Remark 3.1. Note that when talking about program synthesis, even if the definition is a
little vague, we are not thinking of automatically constructing fully-fledged and complex
computer programs like video games or web browsers, but very particular tasks that can
be clearly described or that expose a simple observable semantic behavior.

A specification can be provided in different ways. Among the most common ones we
find the following:

• A formal specification in some logic (e.g. first-order logic1). For example, if we
would like to have a program P that adds 7 to any 64-bit integer input, we could
write the specification as:

∀x ∈ Z/264Z, P(x) = x + 7

• A set of inputs and outputs that describe how the program should behave. For the
example program described before, we could provide as the specification a list of
input/output values like:

(0, 7), (−4, 3), (123, 130), (−368,−361) . . .

• A reference implementation. Although it might seem strange, it will prove useful
in several cases, including our treatment of data-flow code deobfuscation, as will be
motivated below.

A formal specification leads to a deductive program synthesis style. In this case, given
the specification and a set of logical axioms, we try to deduce a suitable implementation.
For doing so, we would not only need a complete formal specification but also a complete
axiomatization of the target language, which can be very difficult to obtain.

If we consider a more relaxed specification, we can leverage an inductive program syn-
thesis style, which tries to find an implementation applying an iterative search technique.
This approach allows a more flexible specification but can potentially run into scaling
problems more easily.

1https://en.wikipedia.org/wiki/First-order_logic

34

https://en.wikipedia.org/wiki/First-order_logic

3.2.2 Inductive oracle-guided program synthesis methods

We will focus on inductive techniques that are based on oracle-guided program synthesis.
This type of program synthesis assumes that we already have an implementation of the
program that we want to synthesize: an Input/Output (I/O) oracle. Then, we can treat
this implementation as a black-box and obtain I/O pairs of values from it.

Different program synthesis methods can fit into an inductive oracle-guided approach.
We will briefly describe some of the most common ones, which have also been used in
different publications addressing code deobfuscation.

Counterexample-guided program synthesis

The main idea is to have two main components running in a loop. On the one hand, we
have the synthesizer that will generate a candidate program that must satisfy the given
specification. On the other hand, we have the verifier that will check if the proposed im-
plementation is correct.

The basic steps that a counterexample-guided program synthesis algorithm (using an
I/O oracle as its specification) perform are as follows:

• Query the I/O oracle with an input and obtain the corresponding output.

• Find a candidate program that satisfies the I/O behavior.

• Check the correctness of the proposed program.

– If the program is not correct, return to first step.

• Return the synthesized program candidate.

At each iteration, instead of randomly generating another I/O pair from the oracle, the
verification step will provide feedback that we can use to guide the next oracle query. This
feedback essentially means that we would get a “meaningful” input to query the oracle
with. This will be further detailed in Section 3.2.3.

Enumerative program synthesis

The differential aspect of enumerative program synthesis is that we generate an exhaus-
tive list of potential program candidates. Later, we filter them following some criteria. In
our case, we are interested in those that show the same I/O behavior as the I/O oracle.

The basic approach would simply check if some program from the list of possible can-
didates exposes the same I/O behavior and return it as the synthesized program. If we
arrive to only one possible candidate, we might want to verify its semantic equivalence to
the obfuscated program serving as oracle. As discussed in Section 3.2.3, this verification
is not always possible or can be very time-consuming

35

Another possibility would be having several program candidates that meet the speci-
fication. In this case, we could proceed in different ways:

• Generating more (random) I/O tests to further filter potential candidates.

• Checking if the candidates are equivalent between them. If they are not, we could
get some feedback to generate a “meaningful” input to query the I/O oracle with,
as will be detailed in Section 3.2.3.

• If the number of candidates is low enough we could try to check directly if they are
equivalent to the obfuscated oracle. This might run into the same time issues as
before.

The code deobfuscation approach described in Section 3.3.2 leverages a flavor of enu-
merative program synthesis to address the simplification of MBA expressions.

Stochastic program synthesis

The idea is to convert the problem of finding a candidate program into a stochastic opti-
mization problem. We initially provide a list of I/O pairs and try to determine the best
candidate program that matches them. The biggest difference is that at each iteration we
generate intermediate results instead of actual candidate programs, which evolve towards a
global optima (i.e. the best candidate program) guided by a cost function. A common way
to implement such approach is by using a Monte Carlo Tree Search2 (MCTS) algorithm.

Stochastic program synthesis is at the core of the deobfuscation approach described in
Section 3.3.1.

3.2.3 Practical considerations

It is important to take into account some practical aspects from program synthesis, specif-
ically oracle-guided approaches that we have discussed.

First, the synthesis step must know how to construct candidate programs (also partial
results, in the case of stochastic method). Essentially, we need to define the set of primitive
components (e.g. the set of operands and operators in an MBA simplification context)
and the ways in which they are allowed to be combined. A common way to formalize
this is by defining a context-free grammar3 that encompasses the primitive components
(terminals) and the ways to combine them (derivation/production rules). In this sense, candi-
date programs will be derivations that only contain terminal symbols, while intermediate
results that appear in the stochastic approach may contain non-terminal symbols as well.

Second, in any practical scenario we will need to define some limits to ensure that the
program synthesis algorithm terminates. On the one hand, we should decide the maxi-
mum number of iterations that we want our algorithm to run for a counterexample-guided

2https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
3https://en.wikipedia.org/wiki/Context-free_grammar

36

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
https://en.wikipedia.org/wiki/Context-free_grammar

approach as well as for enumerative methods if we decide to provide some feedback to
further filter initial outcome. The number of iterations is implicit in algorithms such as
MCTS for a stochastic approach and should be limited as well. We should also limit the
number of I/O pairs that the synthesis method will use to try to determine a candidate
program. In the case of counterexample-guided synthesis this limit might apply to the
initial amount of I/O pairs to generate the first candidate program and not the total num-
ber of iterations of the method (producing a new I/O pair at each). On the other hand,
we should delimit the amount of possible candidate programs. If we generate them with
a context-free grammar as described above, the natural way of doing so is by:

• Deciding the types of instructions and values (operands and operators) contained in
the context-free grammar’s alphabet of terminals.

• Fixing the maximum amount of derivation rules that can be applied to the initial
variable to generate a candidate program.

Third, the verification step of exhaustive and counterexample-guided program syn-
thesis usually involves the aid of an SMT solver. It can be used to check directly if the
candidate program is equivalent to the oracle specification. If the result of such check is
SAT, then we are done. If they are not equivalent, the SMT solver will produce an input
for which they differ. This is the kind of “meaningful” input to query the oracle with
at next iteration. In the case of counterexample-guided approach, we could also ask the
SMT solver if there exists a different candidate program that satisfies all the I/O pairs pro-
vided, but differs for another input. If the SMT solver can find such alternative candidate
program, we would get another “meaningful” input to query the I/O oracle with. This
way we iteratively reduce ambiguity from candidate programs (even if we do not reach a
semantically equivalent candidate to the obfuscated oracle).

Fourth, deciding whether a candidate program is valid enough is also a matter of the
particular problem we are dealing with as well as the amount of uncertainty we are will-
ing to take, depending on our needs. For example, we can decide that a candidate that
satisfies the same I/O behavior for a fixed amount of I/O test cases is valid enough for
us, even if its equivalence (or unambiguity) has not been formally proved.

Finally, as one might have already noticed, the boundary between different program
synthesis approaches, specifically the ones discussed above, are somewhat diffuse. For ex-
ample, in an enumerative algorithm, if we perform any iteration with a new “meaningful”
query to the I/O oracle to refine the initial result, we are actually introducing some kind
of counterexample guidance to the enumerative approach. Indeed, even the proposed
hierarchy, showing three different submethods of a more general oracle-guided approach,
has been presented in this way due to its convenience with respect to the problem of
code deobfuscation that we are addressing. Just as an example, in [Bor15] they describe
oracle-guided synthesis, enumerative synthesis and stochastic synthesis as submethods of
a more general counterexample-guided program synthesis approach. The moral is that
even if we define different approaches by abstraction of some common and representative
criteria, they are not isolated and rigid building blocks, but flexible frameworks. Even

37

more, we might leverage different aspects of several approaches combined if doing so
provides an overall better outcome, specially from a practical standpoint.

For more information regarding the field of program synthesis, the interested reader
can refer to [Bla17a] and [Bor15] for a quick overview. Some examples building simple
synthesizers can be found in [Bor18] or [Alb17]. For a detailed survey of program synthe-
sis as of 2017, [GPS17] is an invaluable resource.

3.3 Existing work

In the context of reverse engineering, Rolf Rolles introduced in 2014 different problems
that can be tackled taking advantage of program synthesis techniques. In particular, he
addresses the following:

• Semi-automated synthesis of CPU emulators (inspired in [GT11]).

• Automated generation of deobfuscators for peephole-expansion obfuscators (inspired
in [BA06]).

• Reconstruction of obfuscated, metamorphic code sequences (inspired in [Gul+11]).

For a detailed assessment, please refer to [Rol14].

In our context addressing data-flow based deobfuscation, and MBA simplification in
particular, the choice of an oracle-guided program synthesis approach derives instinctively
by the nature of our problem: we have a reference (obfuscated) implementation that we
can treat as a black-box and use it as an I/O oracle. This is illustrated in the following
example.

Motivating example

Consider the following function describing an obfuscated MBA expression [Bla17a]:

f (x, y, z) = (((x⊕ y) + ((x ∧ y)× 2)) ∨ z) + (((x⊕ y) + ((x ∧ y)× 2)) ∧ z)

We can treat f as a black-box and observe its behavior:

(1, 1, 1) −→ f (x, y, z) −→ 3

(2, 3, 1) −→ f (x, y, z) −→ 6

(0,−7, 2) −→ f (x, y, z) −→ −5

. . .

Thus, our objective is to learn (or synthesize) a simpler function with the same I/O behavior:

h(x, y, z) = x + y + z

38

Although very scarce, there has been some work addressing code deobfuscation with
program synthesis approaches. Jha et al. propose in [Jha+10] a counterexample-guided
program synthesis approach to deobfuscate code. Even though they do not specifically
address MBA simplification, their benchmarks show that the hardest programs to syn-
thesize are the ones containing a mixing of operators, indicating that MBA expressions
add difficulty to the process, as one could expect. Unfortunately, their synthesizer (named
BRAHMA) has not been publicly released.

More recently, two research papers [Bla+17; DCC20] have been published, which
specifically address MBA simplification for code deobfuscation leveraging different pro-
gram synthesis approaches as a part of their process. We will briefly discuss them below.

3.3.1 Syntia: MCTS based stochastic program synthesis

In their paper [Bla+17], Blazytko et al. introduce a generic approach for simplifying assem-
bly instruction traces based on an oracle-guided stochastic program synthesis approach
on top of an MCTS algorithm. As a result of their research, a tool called Syntia was im-
plemented and publicly released4. They demonstrate that this approach can be applied in
several domains with significant success. In particular, they address:

• Simplification of MBA expressions.

• Learning the semantics of arithmetic VM instruction handlers.

• Synthesizing the semantics of Return Oriented Programming (ROP) gadgets5.

Their approach consists of three distinct parts, which will be summarized below.

Trace dissection

In this initial step, the given assembly instruction trace is separated into unique subtraces
that the authors call trace windows. It is important to note that the way in which the
initial trace is divided highly impacts both the process and the usefulness of later program
synthesis. Consider the case where a trace window ends at an intermediary computation
step. Then, the synthesized expression might not be meaningful at all. Thus, the process of
defining the trace windows’ boundaries is done in a semi-automated fashion, depending
on the problem that is being addressed.

Random sampling

After getting a trace window, the random sampling step will produce I/O pairs using the
trace itself as an I/O oracle, describing its semantic behavior. To do so, the inputs and
outputs are defined as follows:

• All registers and memory locations that are read before they are written in the trace
window are considered as inputs.

4https://github.com/RUB-SysSec/syntia
5https://en.wikipedia.org/wiki/Return-oriented_programming

39

https://github.com/RUB-SysSec/syntia
https://en.wikipedia.org/wiki/Return-oriented_programming

• All registers and memory locations that are written for the last time are considered
as outputs.

Program synthesis

Once a set of I/O samples has been obtained, a stochastic program synthesis method
guided by an MCTS algorithm is used in order to synthesize each output independently.
The basic idea for this kind of program synthesis approach is described above in Section
3.2.2. It is relevant to mention that in order to produce both intermediate results and
actual candidate programs for each synthesis task, a context-free grammar is used to for-
malize the possible programs that can be synthesized, as it is explained above. Also note
that the implementation does not provide any verification step to check for the equiva-
lence between the trace serving as the I/O oracle and the synthesized candidate program.
Despite that, this approach has been shown to be effective and produce correct results
(manually verified for the benchmark tests in the research paper).

The interested reader can refer to the original paper [Bla+17] for a detailed exposition
as well as several tests and benchmarks. This work has also been presented as talk sessions
in several conferences [Bla17b; BC17; Bla18].

3.3.2 QSynth: Offline enumerative program synthesis

A novel approach for code deobfuscation was presented in the very recent paper [DCC20],
which is extensively based on previous work from [Con19]. This new approach is based
on an enumerative program synthesis method and introduces some improvement ideas
with respect to the stochastic approach used in [Bla+17].

Their approach consists of five distinct parts, which will be summarized below.

Program tracing

A trace Tr ,< ins0, ins1, . . . , insn > is defined as a sequence of instructions producing side
effects on registers and memory. Such a trace is obtained via Dynamic Binary Instrumen-
tation6 (DBI). If C denotes the set of all concrete states of a CPU (registers and memory)
and we have a concrete state C ∈ C, then is the concrete evaluation operator of an
instruction on the concrete state. With this notation, the process of evaluating ins0 on the

concrete state C0 to produce the updated concrete state C1 is denoted by C0
ins0 C1.

Dynamic Symbolic Execution (DSE)

The considered DSE is performed on the obtained trace as a separated step after program
execution. The set of free variables (registers or memory locations) is denoted by Var and
the set of constant values represented as bit-vectors by Val. Then, we have the concrete
state mapping C : Var 7→ Val. Similarly, we can define a symbolic state mapping from

6https://en.wikipedia.org/wiki/Instrumentation_(computer_programming)

40

https://en.wikipedia.org/wiki/Instrumentation_(computer_programming)

variables to their logical (i.e. symbolic) counterpart as S : Var 7→ Φ. If S ∈ S represents a

symbolic state, the DSE can be defined as Sn
insn∗ Sn+1. That is, the successive application

of the corresponding instruction semantics on the current symbolic state, where ∗
 is the

symbolic evaluation function and n the instruction index in the trace.

Finally, if Π is the set of all possible symbolic execution paths, we define π ∈ Π as
π ,< S0, S1, . . . , Sn >, i.e. the sequence of symbolic state updates.

Expression abstract syntax tree computation

A slicing criterion indicating to retrieve a logical expression of v ∈ Var at an offset n ∈ N
is denoted by ρ , (v, n). Then, a backward slicing function get_expr : (Π × ρ) → Φ
is introduced. This function performs a recursive backward dependency lookup starting
from symbolic state Sn up to S0 in order to find all logical variables expressions affecting
v at offset n. Thus, the output of get_expr(π, ρ) is an expression formula noted ϕn

v that
represents the symbolic value of v at offset n. The expression ϕn

v is structured as an Ab-
stract Syntax Tree (AST) whose leaves are constants or variables. These free variables will
be the inputs of the expression. The rest of the nodes are operators.

We can define a function that, given a vector of variables, returns an assignment of
values as assignment : 〈Var〉 → 〈Val〉. Then, the I/O oracle associated with ϕn

v can be
defined as Oϕ : 〈Val〉 → Val. Given a test input, Oϕ returns the associated output after
evaluation. Note that such an oracle can be defined for any subexpression (subAST) of
ϕn

v .

Synthesis oracle

A general synthesis oracle is defined as SO : Φ → {Φ ∪ ∅} which is composed of two
suboracles:

• Oϕ : 〈Val〉 → Val, the expression I/O oracle as defined above.

• OS : {O} → Φ, a function mapping a vector of outputs to expressions that produce
O from a test input I.

Essentially, applying a set of test inputs on the I/O oracle Oϕ associated with ϕn
v produces

an output vector Oϕ. If Oϕ belongs to OS then OS provides an expression ϕ′ exhibiting
the same I/O behavior than ϕn

v (with respect to the inputs used). If the synthesis failed,
then no formula (∅) will be returned.

The function OS mapping output vectors to expressions is implemented as an exhaus-
tive search on a context-free grammar. The offline aspect comes from the fact that the
candidate programs are only generated once from the context-free grammar and can be
reused afterwards, without needing to compute them again.

41

Expression simplification

The main idea is to iterate the expression (AST) using the SO to synthesize and replace
parts separately. Synthesized subexpressions are replaced with placeholder variables until
reaching a fix-point when no more substitutions can be made. The concrete algorithm
proposed has been called QSynth.

Remark 3.2. In our opinion, even if the DSE component can provide some advantages
in several scenarios where a dynamic trace can be obtained, and the offline component
can potentially save time (with respect to a stochastic approach, for example), the most
interesting contribution that this research provides is the ability to reduce obfuscated
expressions into smaller subexpressions that can be synthesized on their own and then
reconstructing the synthesis candidate for the whole expression. This allows to reduce
significantly the complexity of the initial target expression, thus leading to a generally
higher success rate in the synthesis process.

The interested reader can refer to the original paper [DCC20] for a detailed exposi-
tion, as well as a pseudocode description of the QSynth algorithm and several tests and
benchmarks presented, including a comparison against [Bla+17] performance. Unfortu-
nately, QTrace7, the framework were this approach has been implemented, is not publicly
available.

3.4 Limitations

In general, the limits of (oracle-guided) program synthesis itself apply to any method that
leverages such an approach to synthesize simplified expressions for code deobfuscation.
These limits might come from different sources:

• Semantic complexity: expressions that are inherently very complex, non-linear and
with deep nesting level. The clearest example would be cryptographic algorithms,
which present strong confusion and diffusion properties.

• Non-determinism: algorithms that can exhibit different behaviors on different runs,
even for the same input, usually involving some kind of (pseudo)random process.

• Point functions: functions that always return the same output for all inputs except
for a single distinguished input.

Thus, if we target some (obfuscated) code that leverages any of the limiting factors de-
scribed, it will be practically impossible to be synthesized. In this case, further manual
analysis would be required in order to determine if there might exist different parts of the
code that could be synthesized separately.

We should also take into account that some degree of preliminary manual analysis is
usually required. Among others, such a manual treatment apply to the following aspects
that come prior to being able to leverage any program synthesis approach to address code
deobfuscation:

7https://blog.quarkslab.com/exploring-execution-trace-analysis.html

42

https://blog.quarkslab.com/exploring-execution-trace-analysis.html

• Location of obfuscation: In order to generate a trace for the particular snippet code we
want to deobfuscate, we first need to locate it. This often requires to perform some
kind of static or dynamic analysis to the program containing the obfuscated code.

• Choice of trace windows: Even if some basic hints are provided in [Bla+17] with respect
to the particular problems they address, there is no general rule to (automatically)
divide a trace into smaller subtraces. This problem is essentially equivalent to the
problem of (automatically) deciding a slicing criterion in [DCC20], in which case it
is left out-of-scope of their research, thus requiring some degree of manual analysis
as well.

43

44

Chapter 4

Integration of Syntia within
radare2

4.1 Implementation

We have developed a proof-of-concept tool called r2syntia that integrates the program syn-
thesis capabilities of Syntia within the code analysis and emulation environment provided
by radare2. The tool has been written in Python3. We briefly describe below the main
components on top of which it is built and how they operate together.

4.1.1 Components

radare2

radare2 is a free and open source reverse engineering framework built from scratch and
written in C, with support for multiple architectures, file formats and operating systems.
Some of its capabilities are:

• Disassembly of binaries of several architectures and operating systems.

• Analysis of code and data.

• Low level debugging.

• Exploiting.

• Binary manipulation.

It provides a Command Line Interface (CLI) usually referred as the radare2 shell, whose
commands are based on mnemonics. Some of its basic commands are:

• s - seek

• px - print hexdump

45

• pd - print disassembly

• wx - write hexpairs

• wa - write assembly

• aa - analyze all

• ia - info all

By appending a question mark ’?’ to any command we can get inline help and a list of
available subcommands.

radare2 is built to be extensible and scriptable by nature. Thus, the easiest way to build
tools on top of it is by using the r2pipe API, which is available to multiple programming
languages. r2pipe provides an extremely simple interface to interact with an instance of
radare2, consisting only of four methods: open(), cmd(), cmdj() quit(). The first and last are
self-explanatory. cmd() receives as input a radare2 command and returns the associated
radare2 output. cmdj() provides JSON deserialization into native objects; receives as input
a radare2 command with the suffix ’j’ indicating JSON output and returns a native object
of the language (e.g. a list or dictionary in Python).

The interested reader can refer to [Gàm19b] for a detailed coverage of the radare2
capabilities and practical usage.

ESIL emulation engine

Code emulation is the process of simulating the execution of code of the same or different
CPU. It is a technique usually related to running software (e.g. games) from old or non-
native platforms. In the context of reverse engineering, we can leverage code emulation
for several use cases:

• Understand a specific snippet of code.

• Avoid risks of native code execution.

• Help code analysis procedures.

• Explore non-native executables.

An intermediate language (or representation) is the language of an abstract machine that
is designed to aid in the analysis of computer programs. They are vital for the process of
(de)compilation.

ESIL (Evaluable Strings Intermediate Language) is an intermediate language specifi-
cally designed to provide emulation capabilities to the radare2 reverse engineering frame-
work. ESIL is built around some basic ideas:

• Small set of instructions.

46

• Based on reverse polish notation (RPN).

• Designed with emulation and evaluation in mind, not necessarily to be human-
friendly.

In general, when we refer to ESIL we are not only talking about the intermediate
language, but also the actual emulation engine bundled inside radare2 built on top of this
intermediate language. In this sense, the ESIL emulation engine has the following main
features:

• Stack based.

• Virtually infinite memory and set of registers.

• Native register aliases.

• Ability to implement custom operations and call external functions.

The interested reader can refer to [Gàm19a; Gàm20] for a specific treatment of radare2’s
code emulation capabilities with ESIL.

Syntia (reduced version)

Syntia1 is a tool developed as a prototype implementation of the stochastic program syn-
thesis method for code deobfuscation proposed in [Bla+17]. In order to integrate it with
radare2 and, in particular, with ESIL, we are only interested in the program synthesis part
of the approach (as described in Section 3.3.1). Thus, we will use a recent fork2 of Syntia
(by Tim Blazytko, one of the authors of [Bla+17]) that has been updated to Python3 and
reduced to its MCTS core to synthesize the semantics of obfuscated code from its I/O
behavior.

We have made some small modifications to the Syntia code base in order to fit our
needs. The main changes affect the context-free grammar generation. Namely, we have
slightly reduced the space of operators included in the terminal symbols of the grammar
to the following ones (+,−, ∗,∧,∨,⊕,∼,−(unary)).

4.1.2 Integration

The idea is that we can call r2syntia from an active radare2 shell were we are performing
the analysis of a binary that contains obfuscated code. Then, r2syntia will operate on top
of radare2 (using r2pipe) to be able to use ESIL emulation engine in order to generate the
I/O pairs of values for the specified variables (registers and memory locations) required
by Syntia, which will finally synthesize the code semantics of the output variable with
respect to the input variables.

radare2
r2pipe←→ r2syntia −→ Syntia

1https://github.com/RUB-SysSec/syntia
2https://github.com/mrphrazer/syntia

47

https://github.com/RUB-SysSec/syntia
https://github.com/mrphrazer/syntia

The basic information required by r2syntia is the bit size, the start offset, the finish offset,
the input variables and the output variable.

The interesting part is that all that information can be obtained by analyzing the code
within radare2 itself. Hence, the main advantage of the proposed approach using r2syntia
is the fact that the synthesis procedure can be leveraged at any time within an active
reversing session. Thus, there is no need to step back from the current analysis in order to
create a code trace, generate the random I/O sampling and then feed Syntia with them.

Remark 4.1. We provide a guided example in Appendix A. Starting from a snippet of non-
obfuscated C code, we recreate the process of obfuscating it (using Tigress), analyzing the
(obfuscated) compiled binary executable with radare2 to locate the obfuscated code (on
the assembly level) and using r2syntia in order to retrieve the semantic behavior of the
obfuscated code.

Remark 4.2. Installation instructions are provided in the code folder attached to this
project. A Dockerfile is also included to ease the installation of the tools and environ-
ment.

4.2 Testing

4.2.1 Experimental environment

Hardware

The machine were the tests have been executed consists of:

• Processor: Intel i5-6300U CPU @ 2.40GHz (in total, 2 cores and 4 threads).

• Memory (RAM): 16GB DDR4 @ 2133MHz.

Software

Apart from the code provided in the attached folder, the exact software versions of the
required tools used in the machine were the tests have been executed are:

• Operating system: Pop!_OS 20.04 LTS (based on Ubuntu 20.04 LTS).

• radare2: 4.5.0

• Python: 3.8.2

– r2pipe python package: 1.4.2

– z3-solver python package: 4.8.8.0

The versions stated above are provided for the sake of completeness, but r2syntia should
be able to run without problems on any UNIX based operating system with any recent
version of Python3 and radare2. The versions of r2pipe and z3-solver were provided
automatically by the pip Python package installer. Thus, the default version installed by
pip should work directly as well.

48

4.2.2 Description

We evaluate the simplification of 500 obfuscated MBA expressions using r2syntia. To
do so, we use the same testbed provided by Syntia, which has been constructed in the
following way:

• Create a C program which calls 500 randomly generated functions, each one taking
5 input variables and returning an expression of layer 3 to 5 (i.e. the number or
derivations of the context-free grammar in order to generate the expression).

• Obfuscate the functions with Tigress v2.2 using EncodeArithmetic3 and EncodeData4

transformations. The former replaces the original expression with an equivalent
MBA expression, as described in Section 2.2.1. The latter encodes integer arguments
before calling the function and decodes them at return, corresponding to the encod-
ings technique described in Section 1.2.1.

Remark 4.3. The original source file, the script used to obfuscate it, the generated ob-
fuscated source file and the compiled obfuscated binary are provided in the code folder
attached to this project.

4.2.3 Syntia configuration

Syntia offers customization of the algorithm via four different parameters:

• SA-UCT: Represents an adaptation to apply the characteristics of Simulated Anneal-
ing (SA) to the Upper Confidence Bound for Trees (UCT) in the context of an MCTS
algorithm. It configures the trade-off between exploration and exploitation. Further
details can be found in Sections 2.3, 2.4 and 4.1 of [Bla+17].

• MCTS iterations: the maximum number of MCTS iterations.

• I/O samples: the number of I/O pairs generated from the oracle.

• playout depth: represents the maximum playout depth, which is a measure that
defines how often a non-terminal symbol can be mapped to rules that contain non-
terminal symbols, as described in Section 4.3 of [Bla+17].

We use the same parameter configuration that is used in the original paper for evaluating
the same testbed of 500 obfuscated MBA expressions:

Parameter Value

SA-UCT 1.5
MCTS iterations 50000
I/O samples 50
playout depth 0

3http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
4http://tigress.cs.arizona.edu/transformPage/docs/encodeData

49

http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeData

A detailed study of the parameters’ choice in different scenarios, as well as a more
in-depth treatment of the meaning and motivation behind the SA-UCT and playout depth
parameters is out of scope of this work. The interested reader can refer to [Bla+17] for
such a reference of these aspects.

4.2.4 Results

After running r2syntia on the testbed of 500 obfuscated MBA expressions, we obtained
the following general results.

Measurement Value

Synthesized tasks 493/500 (98.6%)

Total synthesis time (s) 5155 (01:25:05)
Total success synthesis time (s) 3165 (00:52:45)
Total fail synthesis time (s) 1990 (00:33:10)

The tasks that have not been successfully synthesized are the ones that exhausted the
limit of 50000 iterations of the MCTS algorithm before reaching a synthesized expression.
We observe that a 38.6% (1990/5155) of the time is spent entirely on the 7 tasks not syn-
thesized. If we analyze the time required for individual tasks with respect to their success
or failure, as well as the iterations required to complete the 493 successfully synthesized
tasks, we obtain the following:

Measurement Min Max Mean

Fail synthesis time (s) 279.72 291.72 284.29
Success synthesis time (s) 0.034 77.59 5.77
Success synthesis iterations 0 15016 1178.75

Remark 4.4. The minimum number of MCTS iterations for successfully synthesized tasks
being 0 means that a candidate was found during first iteration.

These numbers suggest that most of the tasks successfully synthesized where com-
pleted in a relative low amount of time and small number of iterations. This behavior is
confirmed by the distribution of time and iterations for the successfully synthesized tasks,
as illustrated in Figure 4.1 and Figure 4.2.

4.2.5 Comparison

As suggested in [Bla+17], we might try to synthesize again the tasks that failed initially.
As the program synthesis leveraged by Syntia has a stochastic nature, this could result
in new successfully synthesized tasks. Indeed, this approach was used in the evaluation
presented in the original paper. They successfully synthesized 448/500 tasks on first run,
and only got to 495/500 after nine runs. However, their synthesis times were way faster
than ours, in absolute values.

50

Figure 4.1: Number of tasks successfully synthesized in a certain amount of time (s)

Figure 4.2: Number of tasks successfully synthesized in a certain number of iterations

51

Despite the apparent divergence in results, these differences are not surprising, but
rather expected. On the one hand, it seems clear that our increased success rate comes
from the modified (reduced) context-free grammar used to generate candidate expres-
sions, effectively reducing the search space for the MCTS algorithm. On the other hand, it
is obvious that their better time performance is due to the fact that the hardware environ-
ment where they run the tests is way more powerful than ours by orders of magnitude:
two Intel Xeon E5-2667 CPUs (in total, 12 cores and 24 threads) and 96 GB of RAM.

Remark 4.5. If one tries to reproduce the evaluation of test cases, consider that running
r2syntia different times might result in relatively variable results due to the stochastic
nature of Syntia.

4.2.6 Improvement proposals

The current implementation of r2syntia has room for improvement in some clear direc-
tions. Probably, the most notable are:

• Add a timeout for a single synthesis task.

• Provide a mechanism to tune the Syntia configuration parameters (see Section 4.2.3).

• Allow to define I/O variables having different bit size than the global bit size.

• Allow to use memory locations for the I/O variables.

• Allow to synthesize different output variables at the same time.

It is relevant to mention that Syntia already has the ability to operate with all the described
improvements and that radare2 trivially provides the extra required information from the
binary. Thus, the only actual work needed to bring these added features to r2syntia would
be to define a proper way in which the analyst is able to specify the values for the synthe-
sis timeout, configuration parameters, variables’ bit size, memory locations and multiple
output variables. Probably, the easiest way to do so would be by registering r2syntia as
a radare2’s core plugin with associated commands and internal configuration variables
within the radare2 shell. This possibility will be explored in the near future, alongside
with open sourcing the r2syntia code.

Remark 4.6. Note that the different improvement ideas presented hereabove do not apply
to the more general field of program synthesis for code deobfuscation, but specifically to
current r2syntia proof-of-concept implementation. Some thoughts in the former direction
will be provided in the conclusions.

52

Conclusions

The main goal of this project was to analyze current state-of-the-art code deobfuscation
techniques, with a strong focus on program synthesis approaches addressing data-flow
deobfuscation based on MBA expressions. As a secondary goal, we wanted to contribute
with practical proposals, test and validate them in a controlled environment. We have
successfully accomplished those objectives through a set of specific achievements.

We have analyzed and presented common code obfuscation techniques used in mal-
ware threats and commercial software protection, providing basic ideas to assess their
quality as well as some theoretical and practical aspects to take into account when ad-
dressing code deobfuscation.

During the theoretical development of MBA expressions, we introduced metrics to
measure the complexity of such expressions and different simplification approaches. We
also showcased the main techniques built of top of MBA expressions in order to perform
data-flow code obfuscation.

We have studied the viability of program synthesis approaches to help in the process
of code deobfuscation. Moreover, we presented recent research in this direction and dis-
cussed their limitations as well.

Finally, our implementation of r2syntia is, to our knowledge, the first integration of
a program synthesis tool (and approach) into the workflow of a fully-fledged reverse
engineering framework.

Future work

On the one hand, we could go for a more theoretical continuation of the study of MBA
expressions. As it is clearly derived from [Eyr17] and our exposition in Chapter 2, there
are quite some open problems involving the formal treatment of MBA expressions. Just as
an example, there is still a lot of research to be done involving identification of arithmetic
operators from a given ANF representation of an MBA expression, specially multiplica-
tion and division.

53

On the other hand, and from a more practical standpoint, the easiest immediate step
to take would be to incorporate the improvements discussed in Section 4.2.6 into r2syntia.
Another clear path to follow would be implementing a system similar to the one described
in [Con19; DCC20]. The basic idea is to split up obfuscated MBA expressions into smaller
subexpressions that could be synthesized on their own. As discussed by Rolf Rolles in his
summary5 of [Con19], from this premise, we should be able to adapt this technique idea
to work entirely on a static level, thus not needing to generate a dynamic trace. For the
synthesis of subexpressions, we could also arise the possibility of replacing the exhaustive
synthesis approach with other alternatives. It would also make a lot of sense to explore
mechanisms that verify the semantic equivalence of the synthesized results (i.e. verify the
soundness of the program synthesis approach) as well as detecting repeating patterns in
order to memorize them and save time for subsequent synthesis tasks.

5https://www.reddit.com/r/ReverseEngineering/comments/eoc0hj/combining_program_synthesis_
and_symbolic/

54

https://www.reddit.com/r/ReverseEngineering/comments/eoc0hj/combining_program_synthesis_and_symbolic/
https://www.reddit.com/r/ReverseEngineering/comments/eoc0hj/combining_program_synthesis_and_symbolic/

Bibliography

[Alb17] Aws Albarghouthi. A Program Synthesis Primer. Apr. 24, 2017. url: https:
//barghouthi.github.io/2017/04/24/synthesis- primer/ (visited on
June 5, 2020).

[And18] D. Andriesse. Practical Binary Analysis: Build Your Own Linux Tools for Binary
Instrumentation, Analysis, and Disassembly. No Starch Press, Incorporated, 2018.
isbn: 9781593279127. url: https://books.google.es/books?id=laWgswEACA
AJ.

[BA06] Sorav Bansal and Alex Aiken. “Automatic Generation of Peephole Superopti-
mizers”. In: SIGOPS Oper. Syst. Rev. 40.5 (Oct. 2006), pp. 394–403. issn: 0163-
5980. doi: 10.1145/1168917.1168906. url: https://doi.org/10.1145/
1168917.1168906.

[BC17] Tim Blazytko and Moritz Contag. Lets break modern binary code obfuscation.
Chaos Communication Congress (34C3). Dec. 27, 2017. url: https://www.
youtube.com/watch?v=TDnAkm6ZTYw (visited on June 8, 2020).

[BD06] Philippe Biondi and Fabrice Desclaux. “Silver Needle in the Skype”. In: 2006.

[Bio+17] Fabrizio Biondi et al. “Effectiveness of Synthesis in Concolic Deobfuscation”.
In: Computers and Security 70 (Sept. 2017), pp. 500–515. doi: 10.1016/j.cose.
2017.07.006. url: https://hal.inria.fr/hal-01241356.

[Bla+17] Tim Blazytko et al. “Syntia: Synthesizing the Semantics of Obfuscated Code”.
In: 26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, Aug. 2017, pp. 643–659. isbn: 978-1-931971-40-9. url:
https : / / www . usenix . org / conference / usenixsecurity17 / technical -
sessions/presentation/blazytko.

[Bla17a] Tim Blazytko. Introduction to program synthesis. Feb. 24, 2017. url: https://
synthesis.to/presentations/introduction_to_program_synthesis.pdf
(visited on June 7, 2020).

[Bla17b] Tim Blazytko. Syntia: Synthesizing the Semantics of Obfuscated Code. USENIX
Security. Aug. 17, 2017. url: https://www.youtube.com/watch?v=RANGyrCbL
e8 (visited on June 8, 2020).

[Bla18] Tim Blazytko. Breaking State-of-the-Art Binary Code Obfuscation via Program Syn-
thesis. Black Hat Asia. Mar. 22, 2018. url: https://www.youtube.com/watch?
v=0SvX6F80qg8 (visited on June 8, 2020).

55

https://barghouthi.github.io/2017/04/24/synthesis-primer/
https://barghouthi.github.io/2017/04/24/synthesis-primer/
https://books.google.es/books?id=laWgswEACAAJ
https://books.google.es/books?id=laWgswEACAAJ
https://doi.org/10.1145/1168917.1168906
https://doi.org/10.1145/1168917.1168906
https://doi.org/10.1145/1168917.1168906
https://www.youtube.com/watch?v=TDnAkm6ZTYw
https://www.youtube.com/watch?v=TDnAkm6ZTYw
https://doi.org/10.1016/j.cose.2017.07.006
https://doi.org/10.1016/j.cose.2017.07.006
https://hal.inria.fr/hal-01241356
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://synthesis.to/presentations/introduction_to_program_synthesis.pdf
https://synthesis.to/presentations/introduction_to_program_synthesis.pdf
https://www.youtube.com/watch?v=RANGyrCbLe8
https://www.youtube.com/watch?v=RANGyrCbLe8
https://www.youtube.com/watch?v=0SvX6F80qg8
https://www.youtube.com/watch?v=0SvX6F80qg8

[Bor15] James Bornholt. Program Synthesis Explained. Jan. 6, 2015. url: https://www.
cs.utexas.edu/~bornholt/post/synthesis-explained.html (visited on
June 5, 2020).

[Bor18] James Bornholt. Building a Program Synthesizer. July 10, 2018. url: https://
www.cs.utexas.edu/~bornholt/post/building-synthesizer.html (visited
on June 5, 2020).

[BP17] Sebastian Banescu and Alexander Pretschner. “A Tutorial on Software Obfus-
cation”. In: Jan. 2017. doi: 10.1016/bs.adcom.2017.09.004.

[CN09] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. 1st. Addison-Wesley Profes-
sional, 2009. isbn: 0321549252.

[Col20] Christian Collberg. The tigress C obfuscator v3.1. Feb. 13, 2020. url: https:
//tigress.wtf (visited on June 2, 2020).

[Con19] Luigi Coniglio. Combining program synthesis and symbolic execution to deobfuscate
binary code. Oct. 2019. url: http://essay.utwente.nl/79934/.

[CTL97] Christian S. Collberg, Clark D. Thomborson, and Douglas Low. “A Taxonomy
of Obfuscating Transformations”. In: 1997.

[Dan+14] Bruce Dang et al. Practical Reverse Engineering: X86, X64, ARM, Windows Kernel,
Reversing Tools, and Obfuscation. 1st. Wiley Publishing, 2014. isbn: 1118787315.

[DCC20] Robin David, Luigi Coniglio, and Mariano Ceccato. “QSynth - A Program
Synthesis based approach for Binary Code Deobfuscation”. In: Jan. 2020. doi:
10.14722/bar.2020.23009.

[DG05] Mila Dalla Preda and Roberto Giacobazzi. “Semantic-Based Code Obfusca-
tion by Abstract Interpretation”. In: Automata, Languages and Programming.
Ed. by Luís Caires et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 1325–1336. isbn: 978-3-540-31691-6.

[EGV16] Ninon Eyrolles, Louis Goubin, and Marion Videau. “Defeating MBA-based
Obfuscation”. In: 2nd International Workshop on Software PROtection. Ed. by
ACM. Vienna, Austria, Oct. 2016. doi: 10 . 1145 / 2995306 . 2995308. url:
https://hal.archives-ouvertes.fr/hal-01388109.

[Eyr15] Ninon Eyrolles. What theoretical tools are needed to simplify MBA expressions?
Sept. 23, 2015. url: https://blog.quarkslab.com/what-theoretical-too
ls-are-needed-to-simplify-mba-expressions.html (visited on May 25,
2020).

[Eyr17] Ninon Eyrolles. “Obfuscation with Mixed Boolean-Arithmetic Expressions :
reconstruction, analysis and simplification tools”. Theses. Université Paris-
Saclay, June 2017. url: https://tel.archives-ouvertes.fr/tel-01623849.

[Gàm19a] Arnau Gàmez i Montolio. A journey through ESIL: Understanding code emulation
within radare2. radare2 congress (r2con). Sept. 6, 2019. url: https://www.
youtube.com/watch?v=MaFafykTASw (visited on June 12, 2020).

56

https://www.cs.utexas.edu/~bornholt/post/synthesis-explained.html
https://www.cs.utexas.edu/~bornholt/post/synthesis-explained.html
https://www.cs.utexas.edu/~bornholt/post/building-synthesizer.html
https://www.cs.utexas.edu/~bornholt/post/building-synthesizer.html
https://doi.org/10.1016/bs.adcom.2017.09.004
https://tigress.wtf
https://tigress.wtf
http://essay.utwente.nl/79934/
https://doi.org/10.14722/bar.2020.23009
https://doi.org/10.1145/2995306.2995308
https://hal.archives-ouvertes.fr/hal-01388109
https://blog.quarkslab.com/what-theoretical-tools-are-needed-to-simplify-mba-expressions.html
https://blog.quarkslab.com/what-theoretical-tools-are-needed-to-simplify-mba-expressions.html
https://tel.archives-ouvertes.fr/tel-01623849
https://www.youtube.com/watch?v=MaFafykTASw
https://www.youtube.com/watch?v=MaFafykTASw

[Gàm19b] Arnau Gàmez i Montolio. Overcoming Fear: Reversing With Radare2. Hack In
The Box Security Conference Amsterdam (HITBSecConf). May 9, 2019. url:
https://www.youtube.com/watch?v=317dNavABKo (visited on June 12, 2020).

[Gàm20] Arnau Gàmez i Montolio. Code emulation for reverse engineers: a deep dive into
radare2’s ESIL. RuhrSec. May 26, 2020. url: https://www.youtube.com/
watch?v=4ATseh8aRTE (visited on June 12, 2020).

[GEV16] Adrien Guinet, Ninon Eyrolles, and Marion Videau. “Arybo: Manipulation,
Canonicalization and Identification of Mixed Boolean-Arithmetic Symbolic
Expressions”. In: GreHack 2016. Proceedings of GreHack 2016. Grenoble, France,
Nov. 2016. url: https://hal.archives-ouvertes.fr/hal-01390528.

[GPS17] Sumit Gulwani, Alex Polozov, and Rishabh Singh. Program Synthesis. Vol. 4.
NOW, Aug. 2017, pp. 1–119. url: https://www.microsoft.com/en- us/
research/publication/program-synthesis/.

[GT11] Patrice Godefroid and Ankur Taly. Automated Synthesis of Symbolic Instruction
Encodings from I/O Samples. Tech. rep. MSR-TR-2011-123. Nov. 2011. url: ht
tps://www.microsoft.com/en- us/research/publication/automated-
synthesis-of-symbolic-instruction-encodings-from-io-samples/.

[Gul+11] Sumit Gulwani et al. “Synthesis of Loop-Free Programs”. In: PLDI’11, June 4-8,
2011, San Jose, California, USA. June 2011. url: https://www.microsoft.com/
en-us/research/publication/synthesis-loop-free-programs/.

[Jha+10] Susmit Jha et al. “Oracle-Guided Component-Based Program Synthesis”. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1. ICSE ’10. Cape Town, South Africa: Association for Computing
Machinery, 2010, pp. 215–224. isbn: 9781605587196. doi: 10.1145/1806799.
1806833. url: https://doi.org/10.1145/1806799.1806833.

[Jun+15] Pascal Junod et al. “Obfuscator-LLVM – Software Protection for the Masses”.
In: Proceedings of the IEEE/ACM 1st International Workshop on Software Protec-
tion, SPRO’15, Firenze, Italy, May 19th, 2015. Ed. by Brecht Wyseur. IEEE, 2015,
pp. 3–9. doi: 10.1109/SPRO.2015.10.

[JXY08] Johnson Harold Joseph, Gu Yuan Xiang, and Zhou Yongxin. “System And
Method For Interlocking To Protect Software-mediated Program And De-
vice Behaviours”. Patent Application WO 2008/101341 A1 (World Intellectual
Property Organization). Aug. 28, 2008. url: https://lens.org/186-219-
911-458-517.

[KW13] Dhiru Kholia and Przemysław Węgrzyn. “Looking Inside the (Drop) Box”. In:
7th USENIX Workshop on Offensive Technologies (WOOT 13). Washington, D.C.:
USENIX Association, Aug. 2013. url: https://www.usenix.org/conference/
woot13/workshop-program/presentation/kholia.

[Lab20] NTT Secure Platform Laboratories. Advanced Binary Deobfuscation. Feb. 11,
2020. url: https://github.com/malrev/ABD (visited on June 1, 2020).

57

https://www.youtube.com/watch?v=317dNavABKo
https://www.youtube.com/watch?v=4ATseh8aRTE
https://www.youtube.com/watch?v=4ATseh8aRTE
https://hal.archives-ouvertes.fr/hal-01390528
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/automated-synthesis-of-symbolic-instruction-encodings-from-io-samples/
https://www.microsoft.com/en-us/research/publication/automated-synthesis-of-symbolic-instruction-encodings-from-io-samples/
https://www.microsoft.com/en-us/research/publication/automated-synthesis-of-symbolic-instruction-encodings-from-io-samples/
https://www.microsoft.com/en-us/research/publication/synthesis-loop-free-programs/
https://www.microsoft.com/en-us/research/publication/synthesis-loop-free-programs/
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1109/SPRO.2015.10
https://lens.org/186-219-911-458-517
https://lens.org/186-219-911-458-517
https://www.usenix.org/conference/woot13/workshop-program/presentation/kholia
https://www.usenix.org/conference/woot13/workshop-program/presentation/kholia
https://github.com/malrev/ABD

[LM91] Xuejia Lai and James L. Massey. “A Proposal for a New Block Encryption
Standard”. In: Advances in Cryptology — EUROCRYPT ’90. Ed. by Ivan Bjerre
Damgård. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 389–404.
isbn: 978-3-540-46877-6.

[Riv01] Ronald L. Rivest. “Permutation Polynomials Modulo 2w”. In: Finite Fields and
Their Applications 7.2 (2001), pp. 287–292. issn: 1071-5797. doi: https://doi.
org/10.1006/ffta.2000.0282. url: http://www.sciencedirect.com/
science/article/pii/S107157970090282X.

[Rol09] Rolf Rolles. “Unpacking virtualization obfuscators”. In: Proceedings of the 3rd
USENIX Conference on Offensive Technologies (Jan. 2009).

[Rol14] Rolf Rolles. Program Synthesis in Reverse Engineering. Dec. 15, 2014. url: https:
//www.msreverseengineering.com/blog/2014/12/12/program-synthesis-
in-reverse-engineering (visited on June 5, 2020).

[Rol18a] Rolf Rolles. A walk-through tutorial, with code, on statically unpacking the finspy
VM: part one, x86 deobfuscation. Jan. 23, 2018. url: https://www.msreverseen
gineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-
on-statically-unpacking-the-finspy-vm-part-one-x86-deobfuscation
(visited on June 1, 2020).

[Rol18b] Rolf Rolles. Finspy VM part 2: VM analysis and bytecode disassembly. Feb. 1, 2018.
url: https://www.msreverseengineering.com/blog/2018/1/31/finspy-
vm-part-2-vm-analysis-and-bytecode-disassembly (visited on June 1,
2020).

[Rol18c] Rolf Rolles. Finspy VM unpacking tutorial part 3: devirtualization. Feb. 21, 2018.
url: https://www.msreverseengineering.com/blog/2018/2/21/finspy-
vm - unpacking - tutorial- part - 3- devirtualization (visited on June 1,
2020).

[War12] Henry S. Warren. Hacker’s Delight. 2nd. Addison-Wesley Professional, 2012.
isbn: 0321842685.

[Zho+07] Yongxin Zhou et al. “Information Hiding in Software with Mixed Boolean-
Arithmetic Transforms”. In: Information Security Applications. Ed. by Sehun
Kim, Moti Yung, and Hyung-Woo Lee. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 61–75. isbn: 978-3-540-77535-5.

58

https://doi.org/https://doi.org/10.1006/ffta.2000.0282
https://doi.org/https://doi.org/10.1006/ffta.2000.0282
http://www.sciencedirect.com/science/article/pii/S107157970090282X
http://www.sciencedirect.com/science/article/pii/S107157970090282X
https://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
https://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
https://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
https://www.msreverseengineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-on-statically-unpacking-the-finspy-vm-part-one-x86-deobfuscation
https://www.msreverseengineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-on-statically-unpacking-the-finspy-vm-part-one-x86-deobfuscation
https://www.msreverseengineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-on-statically-unpacking-the-finspy-vm-part-one-x86-deobfuscation
https://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
https://www.msreverseengineering.com/blog/2018/1/31/finspy-vm-part-2-vm-analysis-and-bytecode-disassembly
https://www.msreverseengineering.com/blog/2018/2/21/finspy-vm-unpacking-tutorial-part-3-devirtualization
https://www.msreverseengineering.com/blog/2018/2/21/finspy-vm-unpacking-tutorial-part-3-devirtualization

Appendices

A Guided example

We start with a C function f 498 that receives as input five 64-bit unsigned integers and
returns as another 64-bit unsigned integer the value obtained by multiplying the second
and fourth arguments (see Figure A.1).

Figure A.1: Non-obfuscated C source code for f 498 function

Another function target_498 is defined solely as a wrapper calling f 498. This is done
to further obfuscate the final code by encoding the arguments serving as inputs to f 498.
(see Figure A.2).

Figure A.2: Non-obfuscated C source code for target_498 function

Then, we proceed to obfuscate the code with Tigress v2.2. On the one hand, we apply
the EncodeArithmetic6 transformation to replace the original expression for the return value
in f 498 with an equivalent MBA expression, as described in Section 2.2.1. (see Figure A.3).
On the other hand, we apply the EncodeData7 transformation to encode the integer argu-
ments in target_498 before passing them to f 498. This transformation corresponds to the
encodings technique described in Section 1.2.1 (see Figure A.4).

6http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
7http://tigress.cs.arizona.edu/transformPage/docs/encodeData

59

http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeData

Figure A.3: Obfuscated C source code for f 498 function

Figure A.4: Obfuscated C source code for target_498 function

60

After we generate the obfuscated C code, we can simply compile it into a binary exe-
cutable. This executable will contain the obfuscated code as assembly (ASM) instructions.
In our case, we compiled it for the Intel x86-64 architecture. Thus, this will be the flavor
of assembly we will be dealing with.

Non-obfuscated C
Tigress−→ Obfuscated C

Compiler−→ Obfuscated ASM

Now we open the binary executable with radare2 and proceed to perform some basic
analysis with command aa. This command will essentially find functions within the exe-
cutable, define them in the context of the current radare2 session and perform some basic
analysis to determine their parameters and internal variables. We will be able to access
to the defined functions’ offsets by a flag name. Note that in our case the flag name will
come directly from the original name in C source, as the testing binary we generated is
non-stripped8.

In order to obtain a disassembly listing of the function target_498 we use the following
command: pd f @ sym.target_498. This command can be read as “print the disassembly
listing of the function located at the offset pointed by the flag sym.target_498”. Besides
the raw disassembly of the instructions that form the function, the output of the previous
command will also provide a high level representation of the function declaration as well
as meaningful comments (everything after a semicolon ’;’). Both the declaration and com-
ments have been automatically added during the former analysis. Figure A.5 shows the
radare2’s output from this command.

Observe that after the input arguments for target_498 have been encoded, we have
the call (at offset 0x0041b320) to the function f498, which has been given the flag name
sym. f 498. We can list the disassembly of this function in the same way as we did before
using the following command: pd f @ sym. f 498. We include in Figure A.6 the full disas-
sembly of the function f 498 provided by radare2. Please note that the code in this figure
is not intended to be effectively read, but rather to provide a sense of the dimension of the
obfuscated function f 498 in the assembly level.

Before running r2syntia, we need to know the information required by it. The bit size
will be 64, of course. The start offset and finish offset determine the boundaries of the code
to be deobfuscated. These offsets will be used as the boundaries for the I/O generation
with ESIL emulation as well. In this case, we are interested in determining the semantics
of the obfuscated code starting at the beginning of the function target_498 until its end,
which will include the call to the function f 498. Thus, the start offset will be 0x0041b264
and the finish offset will be 0x0041b327. The input variables will be the registers that hold
the passing arguments to the function calls: rdi, rsi, rdx, rcx and r8. The output variable
will be the register rax, which holds the return value.

8https://en.wikipedia.org/wiki/Stripped_binary

61

https://en.wikipedia.org/wiki/Stripped_binary

Figure A.5: Obfuscated ASM instructions for target_498 function

62

Figure A.6: Obfuscated ASM instructions for f 498 function

Note that in this example the obfuscated code is exactly defined as functions such that
it is trivial to obtain the input and output variables used for the corresponding calling con-
vention9. The input variables were also displayed as comments added by radare2 in the
previous disassembly listing of the functions. In a more general scenario, some manual
analysis would be required in order to determine the exact boundaries for the obfuscated
code as well as its input and output variables.

Now that we have all the information required by r2syntia, we can run it directly
within the radare2 shell itself with the following command:

#!pipe python [path to r2syntia] [bit size] [start offset] [finish offset] [inputs] [output]

Figure A.7: r2syntia: Invocation and general information

9https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions

63

https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions

For this guided example, we have purposely added a lot of verbose information to be
displayed during the execution of r2syntia, so the whole process is easier to follow. Such
level of verbosity is left in the code attached with this project so the interested reader
can reproduce the example more faithfully, but it could be adjusted for future releases.
Figure A.7 shows the invocation of r2syntia from the radare2 shell as well as the general
information that has been passed. After that, we generate the pairs of random I/O pairs
using ESIL. The exact I/O pairs generated that will be used for the current synthesis task
are displayed in Figure A.8.

Figure A.8: r2syntia: Generated I/O pairs

64

Then, the context-free grammar that will be used to construct the candidate programs
is created. Its components are explicitly displayed as can be seen in Figure A.9. Please
note that the last terminal symbol represents the unary operator neg, i.e. computes the
two’s complement negative value. When displaying this verbose output, we chose to use
the same symbol for it as the one used for the subtraction since it is commonly repre-
sented in this way, but note that the internal implementation (and representation) is of
course different. Also note that even if we display operations in infix notation during
the synthesis process for the sake of readability, their internal representation uses reverse
polish notation (RPN) so we do not need to include parentheses symbols in our grammar.

Figure A.9: r2syntia: context-free grammar used for the synthesis

Finally, the actual synthesis process takes place. Figure A.10 shows a representation
of the MCTS operation, showing the intermediate results (i.e. partial derivations from
the context-free grammar) with the associated reward. The synthesis finishes successfully
when obtaining a reward of 1.0 for a program candidate. In this case we find that the
semantics described by the I/O relations of the obfuscated assembly code (that is, the
semantics of the output rax with respect to the inputs rdi, rsi, rdx, rcx and r8) equals to
the multiplication of rcx and rsi registers, which are the second and fourth arguments of
the obfuscated function. That is, we found that the semantic behavior of the obfuscated
code simply returns the value obtained by multiplying the second and fourth arguments
received, which is the exact behavior of the original non-obfuscated C code.

65

Figure A.10: r2syntia: synthesis process and semantic behavior extraction

66

B Planning

The project was divided in concrete tasks to be done with an allocated amount of time to
complete each one. Roughly speaking, we set two weeks for each task regarding study
and research and one week for each task related to the writing of the report. The concrete
task breaking and timing allocation is presented as a Gantt diagram in Figure B.1.

Figure B.1: Gantt diagram representing the project’s planning

For each task, we assigned a description, objective and outcome as it is further detailed
below:

• [16 - 29 Feb.] Preparations

– Description: Manage bureaucracy between University of Barcelona and Eure-
cat. Find and organize resources.

– Objective: Solve any formal issues with the realization of the project. Get a
sense of existing work done related to the field to study.

– Outcome: Grant with Eurecat to do the project. Initial backlog of potentially
useful resources to explore.

• [1 - 15 Mar.] Project overview

– Description: Review related posts/talks on the topic. Contact with other re-
searchers.

– Objective: Narrow the topic for the project, getting a clear big picture of the
most important aspects to be studied, serving as a basic guide.

– Outcome: Slides and remote presentation of the project to IT Security group at
Eurecat. Draft of initial approach to the project.

• [16 - 31 Mar.] Code (de)obfuscation

67

– Description: Study common techniques for code (de)obfuscation.

– Objective: Understand the basics of code obfuscation techniques: how to clas-
sify them and their possible interactions. Moreover, understand the different
approaches to code (de)obfuscation, not only theoretically but also from a more
practical reverse engineering standpoint.

– Outcome: Listing of references addressing the problem of code (de)obfuscation:
considerations and common techniques.

• [1 - 15 Apr.] MBA expressions

– Description: Theoretical study of MBA expressions and applicability for code
obfuscation.

– Objective: Establish a grounding foundation for the understanding of MBA
expressions formally and its relation to code obfuscation.

– Outcome: Listing of references discussing MBA expressions aiming to a theo-
retical formalization and oriented to obfuscation.

• [16 - 30 Apr.] Program synthesis

– Description: Study about program synthesis in general.

– Objective: Understand the basics of program synthesis techniques.

– Outcome: Listing of references and guided examples introducing the field of
program synthesis.

• [1 - 15 May] Concrete program synthesis approaches

– Description: Study concrete approaches of program synthesis applied for code
deobfuscation and, in particular, for simplification of MBA expressions.

– Objective: Understand the current techniques and implementations using pro-
gram synthesis approaches for code deobfuscation and simplification of MBA
expressions.

– Outcome: Listing of references and resources using program synthesis ap-
proaches to code deobfuscation and simplification of MBA expressions.

• [16 - 24 May] Report (MBA expressions)

– Description: Write the chapter on MBA expressions for the report.

– Objective: Provide a basic theoretical foundation for MBA expressions, includ-
ing different approaches to perform MBA obfuscation, complexity metrics and
a discussion about simplification approaches. Combine it in an organized and
structured chapter.

– Outcome: Written chapter on MBA expressions for the report.

• [25 - 31 May] Report (Code (de)obfuscation)

– Description: Write the chapter on code (de)obfuscation for the report.

68

– Objective: Combine the different resources studied related to fundamentals
of code (de)obfuscation in an organized and structured chapter providing the
general considerations as well as practical techniques.

– Outcome: Written chapter on code (de)obfuscation for the report.

• [1 - 7 Jun.] Report (Program synthesis)

– Description: Write the chapter on program synthesis for the report.

– Objective: Combine the different resources studied related to program synthe-
sis and its application to code deobfuscation in an organized and structured
chapter detailing the general idea as well as practical current approaches and
implementations.

– Outcome: Written chapter on program synthesis for the report.

• [8 - 14 Jun.] Test

– Description: Test open source program synthesis approaches for code deobfus-
cation

– Objective: Test and compare the application of different program synthesis ap-
proaches for code deobfuscation based on simplification of MBA expressions.

– Outcome: Last chapter (or appendix) at the report showing the tests and results.

• [15 - 21 Jun.] Review

– Description: Review the final report.

– Objective: Correct orthographic errors. Polish details. Make sure all formal
aspects (structure, paging, referencing, titles...) are correct.

– Outcome: A final version of the report to be deposited (deadline 21st jun.).

• [22 - 30 Jun.] Defense

– Description: Prepare the defense of the work that will be held in front of exam-
ining court.

– Objective: Create slides for the defense. Rehearse: timing, speech, possible
questions...

– Outcome: Presentation in form of slides. Potentially a recorded video or remote
presentation to be given.

Apart from some minor delays (2-3 days) during the weeks devoted to writing the first
three chapters, we managed to follow the initial planning almost entirely. Probably the
most relevant mention would be that the week devoted to the Test task ended up with a
last chapter and an appendix, instead of just one of them.

69

C Methodology

C.1 Individual organization

The resources needed to study and go through for the project came from very different
format sources: papers, thesis, talks, courses, blogs, etc. Moreover, some degree of exper-
imentation and tests were needed, mostly in the last phase of the project. Because of that,
the organization of the different subtasks for the completion of each task of the project has
been structured following the agile process of a Kanban board, generalized for all kinds
of different subtasks.

In particular, a board in the Trello software has been used to track all the pending
tasks, each one having its card. We used several lists on the board, namely:

• Backlog: General list with any relevant material. All resources and anything new that
is found and could be useful will be put in this list.

• Queue: Tasks from backlog that are more relevant or have higher priority are moved
here. Order of tasks in this list becomes meaningful.

• Week: Tasks planned for current week.

• Doing: Tasks being currently worked.

• Done: Tasks completed.

This organization offers several benefits. It lets us visualize the big picture of the project as
it evolves. Moreover, it helps to limit the number of tasks being worked on simultaneously.

C.2 Code and report

The required code development has been managed with git control version system and
stored remotely on GitHub.

The report has been written in LaTeX typesetting system. We used the online web
application Overleaf as the LaTeX editor. The Overleaf project was synced with a git
repository stored at GitHub. This let us to manage a version control for the report itself,
as well as being able to work offline with a local cloned version of the repository if needed.

C.3 Contact with directors

Due to the highly specificity of the project’s topic, most of the work has been carried out
independently. Contact with University directors has been sporadic, mainly to inform of
the advances and to ask for feedback for the report as it was being written. Contact with
Eurecat’s director has been a little more frequent and detailed. In both cases, most of the
contact has been done remotely (by mail or other official means).

70

	Introduction
	Code obfuscation
	Context
	Survey of obfuscation techniques
	Data-flow based
	Control-flow based
	Mixed data-flow and control-flow based

	Assessing the quality of code obfuscation
	Complexity metrics of a program
	Metrics for obfuscation
	Attack model from Abstract Interpretation

	Fundamentals of code deobfuscation
	Discussion: academic vs practical code deobfuscation

	Mixed Boolean-Arithmetic expressions
	Fundamentals
	Polynomial MBA expressions

	Obfuscation with MBA expressions
	Obfuscation of expressions
	Opaque constant
	Generating new linear MBA equalities
	Obfuscation vs Cryptography

	Complexity
	Incompatibility of operators
	DAG representation
	Metrics

	Simplification
	Context
	Bit-blasting approach
	Symbolic approach

	Program synthesis for code deobfuscation
	Context
	Fundamentals of program synthesis
	Introduction
	Inductive oracle-guided program synthesis methods
	Practical considerations

	Existing work
	Syntia: MCTS based stochastic program synthesis
	QSynth: Offline enumerative program synthesis

	Limitations

	Integration of Syntia within radare2
	Implementation
	Components
	Integration

	Testing
	Experimental environment
	Description
	Syntia configuration
	Results
	Comparison
	Improvement proposals

	Conclusions
	Bibliography
	Appendices
	Guided example
	Planning
	Methodology
	Individual organization
	Code and report
	Contact with directors

